
DECEMBER 1990

COMPUTER

Hi

In this issue:
• Scientific Programming

• Compiling Scientific Code

• Parallel Computation

• Engineering Philosophies

• Common Benchmarks

1990
Annual Index

^@IEEE COMPUTER SOCIETY
THE INSTITUTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS, INC.

INTERNATIONAL PHOENIX CONFERENCE ON COMPUTERS & COMMUNICATIONS

see msrsm our minds

March 27-30, 1991
Scottsdale, Arizona
Contact: Mary Murphy-Hoye

(602) 554-5257 or mhoye@fa.intel.com

Sponsored by the IEEE
Communication Society <w>

Conferences sure have changed. Lately it
seems, the more specialized the better. But
most of us are having to learn and apply a

broad range of technologies on a daily basis.
What's important to us too, is the chance to
exchange ideas with our peers, to see what's
happening on the other side of the fence, and
be exposed not only to new ideas, but different
ways of thinking about the old.

And that's where we come in. Over the past ten
years we’ve developed a conference that tries
very hard to cover a broad range of topics and
deals with the interesting problems of comput¬

ers, communications, AND computers commu¬
nicating. And we've tried to keep that balance
between new theories and practical application.

We've learned (from talking to people like you)
that sitting all day listening to paper presenta¬
tions isn't all that a conference should be.
So we've added state-of-the-art exhibits show¬
casing the relationships between computers
and communications. And lots more panel
sessions where you have a chance^to debate
the latest hot topics with experts in the field.
A wide array of full-day tutorials gives you a
chance for some intense training on new
techniques.

We even have our own "communication’1 room,
where each attendee has access to computers
and networks world wide.

We hold this conference in Arizona, and
without bragging, at what happens to be the
best time of year to visit the desert.

So come to Scottsdale, and help us celebrate
our tenth anniversary by making this our best

conference to date. We can't do it without you.

Contact us for a poster, a brochure, or more
detailed information. Because, even though
we're computer heads, how are we going to
communicate if we don't get together and talk?

NEW FOR NETWORK ANALYSTS AND SYSTEMS ENGINEERS

NETWORK II.5 now predicts performance of
» computer-communication systems

Free trial and, if you act now, free training

Network 11.5 uses
simulation to predict your

network performance. You simply
describe your network and work¬
load.

Animated simulation follows im-
mediately-no programming delays.

Easy-to-understand results
You get an animated picture of

your network. System bottlenecks
and changing levels of utilization
are apparent.

Seeing your network animated in¬
creases everyone’s understanding of
its operation and builds confidence
in your results.

Your reports show response
times, messages delivered, messages
lost, device utilization, and queue¬
ing statistics.

Computers with NETWORK II.5
NETWORK II.5 is available for

most PC’s, Workstations, and
Mainframes.

Your network simulated
You can analyze embedded or

distributed computer systems, or
other computer-communication net¬
works. Industry standard protocols
such as FDDI and IEEE Standard
802.X are built-in. Others can be
modeled.

You can easily study the effect of
changing network parameters or
even network protocols.

You can simulate some portions
of the network at a detailed level
and others at a coarser level.

Free trial information
The free trial contains everything

you need to try NETWORK II.5®
on your computer. For a limited
time we also include free training
—no cost, no obligation.

Call Paul Gorman at (619)
457-9681, Fax (619) 457-1184. In
Europe, call Nigel McNamara, in
the UK, on (081) 332-0122, Fax
(081) 332-0112.

!-
! Free trial offer
I See for yourself how NETWORK II.5
I quickly answers network performance
I questions.
| Limited offer-Act now for free training.
I DSend details on your University Offer.

City_State

I Return to: ieee comp
CACI Products Company
3344 North Torrey Pines Court
La Jolla, California 92037

I Call Paul Gorman at (619) 457-9681.
Fax (619) 457-1184.

' In Europe:
I CACI Products Division

Palm Ct., 4 Heron Square
Richmond-Upon-Thames
Surrey TW9 1EW, UK
Call Nigel McNamara on (081) 332-0122.

| Fax (081) 332-0112.

NETWORK II.5 is a registered trademark and service
mark of CACI. ©1989 CACI.

COMPUTER
December 1990 Published by the IEEE Computer Society Vol. 23, No. 12

ARTICLES

13 Do Parallel Languages Respond to the Needs of Scientific Programmers?
Cherri M. Pancake and Donna Bergmark

Scientific researchers don't develop parallel programs the way computer scientists do. This article explains why existing
languages may not provide enough support for scientific programming.

25 Compiling Scientific Code Using Partial Evaluation
Andrew Berlin and Daniel Weise

Partial evaluation transforms a high-level program into a low-level program that is specialized for a particular application.
This exposes the parallelism inherent in the underlying numerical computation.

Q Q Architecture-Independent Parallel Computation
David B. Skillicorn

Locality-based computation, the foundation for an architecture-independent programming language grounded in the Bird-
Meertens formalism, shows that architecture-independent parallel programming is possible.

Cl 2 Philosophies for Engineering Computer-Based Systems
" Harold W. Lawson

A sound problem-relevant philosophy is the key to achieving successful implementation of complex computer-based
systems. Software engineering methods and tools will naturally flow from this foundation.

El An Overview of Common Benchmarks
Reinhold P. Weicker

“Fair benchmarking” would be less of an oxymoron if those using benchmark results knew what tasks the benchmarks
really perform and what they measure.

SPECIAL FEATURE

131 1990 Annual Index

All technical articles and features published this year are listed by authors and subject areas.

Withdrawal symptoms Cover design: Jay Simpson, Design & Direction

76 Standards
Information technology standardization is key area of interest to IEE

81 Update
Conflicts ensue over software “repossession,” termination of service;
Council formed to support software industry integrity

82 Computer Society News In the next issue
Society members elect new officers and board members; Board of Experimental research in computer architecture
Directors dissolves AFIPS; Friends, associates mourn passing of Toy

85 Product Reviews

93 New Products

98 IC/Microsystem Announcements

100 Conferences/Call for Papers/Calendar Career Opportunities, 115; Computer Society Information,
144; Membership Application, 79; Change of Address Form,

111 Book Reviews/cs Magazines 92; Advertiser/Product Index, 80; Reader Service Card, 80A

COMPUTER
10662 Los Vaqueros Circle, PO Box 3014, Los Alamitos, CA 90720-1264

Editor-in-Chief
Bruce D. Shriver, University of Southwestern Louisiana

Associate Technical Editor
Jon T. Butler, Naval Postgraduate School

Sti
True Seaborn
Marilyn Poles
Douglas L. Combs
Pat Paulsen

Editorial Board
Dharma P. Agrawal, North Carolina State University

Dennis R. Allison, Stanford University
Fletcher Buckley, GE Aerospace

Scott Davidson, AT&T
Richard Eckhouse, MOCO

Michael Evangelist, Andersen Consulting
Scott E. Fahlman, Carnegie Mellon University

John R. Gurd, University of Manchester
Brent T. Hailpern, IBM T.J. Watson Research Center

James H. Haynes, University of California, Santa Cruz
Tadao Ichikawa, Hiroshima University

Guy Johnson, Rochester Institute of Technology
Yale Patt, University of Michigan

Guylaine M. Pollock, Sandia National Laboratories
Vincent Y. Shin, MCC

Martha Sloan, Michigan Technological University
Akinori Yonezawa, Tokyo Institute of Technology

Submissions
Send six double-spaced copies of articles and special-issue proposals to

Jon T. Butler, Dept, of Electrical and Computer Engineering, Code EC/Bu,
Naval Postgraduate School, Monterey, CA 93943-5004,

phone (408) 646-3299. For electronic submission, Butler’s addresses are
j.butler on Compmail II and butler@cs.nps.navy.mil on Internet.

Managing Editor:
Staff Editors:

Contributing Editor:

Marilyn Potes
Chuck Governale
Christine Miller

Design/Production:
Membership/Circulation:

Advertising Coordinators:

Jay Simpson
Toni Van Buskirk, Janice Garton
Christina Champion
Heidi Rex, Marian Tibayan

Magazine Advisory Committee
Pradip K. Srimani (chair), Jon T. Butler, B. Chandrasekaran,
Manuel D’Abreu, James Farrell HI, Joe Hootman, Anil Jain,
Sushil Jajodia, Ted Lewis.True Seaborn, Bruce D. Shriver,

John Staudhammer

Publications Board
Sallie Sheppard (chair), Dharma P. Agrawal, Victor Basili, P. Bruce Berra,

J. Richard Burke, Jon T. Butler, J.T. Cain, B. Chandrasekaran,
David Choy, James Cross, Manuel D’Abreu, James J. Farrell III.

Joe Hootman, Sushil Jajodia, Glen G. Langdon, Ted Lewis, Ming T. Liu,
C.V. Ramamoorthy, True Seaborn, Bruce D. Shriver, John Staudhammer,
Harold Stone, Steven L. Tanimoto, Joseph Urban, Ben Wah, Ron Williams

December 1990

EXPLORE

Display

Modules

ExPLORJEjNET

Find Hidden Answers.

EXPLOREIMET 3000 ”

is advanced neural network

software for the PC that helps

you find hidden answers in

your data. You will experience

the ease of developing your

application within

Microsoft Windows™

3.0 environment

(compatible with

over 3,000 other

programs on the PC/

AT). And best of all,

you can develop

applications without

programming!

ExploreNet 3000

applications are

100% compatible with HNC's

ANZA Plus™ coprocessors.

Support fixed and variable

length ASCII and binary files,

which can be generated by

99% of all programs. For

instance, output from such

popular programs as Lotus

1 -2-3™, dBase II™ and Excel™

can be used without

modification.

Watch your network train and

learn by mdnitoring the results

using six different display

options: Plots, Tiles, Images,

Forms and Charts

(pie charts and bar

charts).

Perform pre-and post-process¬

ing operations by combining

functions from a library of

over 50 routines. Supports

scalar, vector and matrix

Pipe Module

Receive input from and output

to thousands of other programs

including expert systems,

databases and applications

programs running on the PC

under MS-Windows.

Tailor any of the 18

well-known neural

networks to your

application, or

modify the architec¬

ture of one of the three exper¬

imental networks to your

specifications.

ExploreNet 3000 will get you

up and running faster than

any other neural network

product on the market—we’ll

back it with a 30-day money-

back guarantee.

Can
1-800-HNC-EXPR

5501 Oberlin Drive
San Diego. CA 92121

(619) 546-8877

Fax (619) 452-6524

Reader Service Number i

Computer Society IV A HQQ A n
President’s IVICOO/Av^E

The future looks even better

This is a natural time for me to re¬
flect upon my year as Computer
Society president — a year that,

in many respects, seemed to fly by all too
quickly. I have learned a number of things
that I would like to share with you about
the society and its relationship to its
members, other parts of the IEEE, and or¬
ganizations outside the IEEE family.

Volunteers. The Computer Society,
like any association of technical profes¬
sionals, encompasses at least as many
ideas and opinions as there are volunteers
involved. At times, this diversity stimu¬
lates some highly energetic discussions
— to say the least. But one thing is clear:
Those who dedicate their time and efforts
in support of the Computer Society’s ac¬
tivities truly care about the quality of the
results. The society is blessed with an ex¬
traordinary cadre of volunteer leaders —
hundreds of them — whose hard work
makes the society the leader in its field.

Staff. During this year, I visited each of
our four offices — in Belgium, Japan,
California, and back home (for me) in
Washington, DC. Regardless of the loca¬
tion, all of our offices have one thing in
common: a staff of highly competent,
dedicated professionals. Our staff pro¬
vide the fulcrum on which we leverage
our volunteer effort, yielding many more
quality programs and services for mem¬
bers than is typical for organizations of
our budgetary and staff size.

Partnerships. Back in January, I
pledged to work to expand our partner¬
ships with other professional and techni¬
cal organizations — both in terms of es¬
tablishing new affiliate relationships and
organizing joint activities. Throughout
the year, I have met and corresponded
with representatives from a number of
other societies. I believe we should strive
to maintain active communications and
to expand technical collaboration with
our sister societies around the world.
Such partnerships will help strengthen
our ability to support the needs of com¬
puting professionals.

IEEE. During the past year, I have had
occasion to work closely with a number
of officers, committees, and boards in
IEEE. We worked together to try to
strengthen the institute while balancing
the sometimes conflicting requirements
of different parts of the whole. Some ten¬
sion is inevitable in any family, but we
remain a vital family. The Computer So¬
ciety’s relationship with the institute is
important to the health of both. It should
be maintained and improved for the bene¬
fit of all our members, and as I assume the
new duties of IEEE Division VIII direc¬
tor, to which you have just elected me, I
will continue my efforts to do so.

Meeting members’ needs. By the end
of 1990, Computer Society membership
will approach 110,000. Our growth has
been rapid, reflecting the impressive
growth of the computing industry. And
like the industry, we are maturing. Next
year, we will celebrate the 40th anniver¬
sary of the founding of the Computer So¬
ciety. It is time for us to stand back and re¬
assess our programs. We can see from the
magazines you order and the conferences
you attend that your interests and priori¬
ties are changing. To meet your needs, we
must make changes in the programs and
services we offer, and to do this we need
more direct feedback from you. Many of
you have contacted me throughout the
year with your comments, suggestions,
and even your complaints. You have let
me know what you think is important and
what is not. For this I thank you and en¬
courage you to continue communicating
with all the society’s leaders.

The officers and Board of Governors
members are listed in every issue of Com¬
puter magazine and in almost all issues of
our other periodicals. If you don’t know
their addresses, just write to them in care
of any of our offices and your comments
will be forwarded. If something is wrong,
we need to know it. If you have a good
idea about something we should be doing
— a new product or service — let us hear
from you. Frankly, it is easy for us as soci¬
ety leaders to sometimes get so caught up
in running the society’s business that we

The Computer Society’s 1990 presi¬
dent, Helen M. Wood, encourages con¬
tinued communication between society
officers and the members they serve.

may momentarily lose sight of our pri¬
mary objective: member service. Direct
contact with members is what prevents
that from happening. Praise is always
welcome, criticism will be treated con¬
structively, and new ideas are received
with enthusiasm.

This column is my last chance to pub¬
licly express my appreciation to the soci¬
ety’s officers. Board of Governors, and
staff for their efforts throughout my year
as president. In particular, I would like to
recognize several individuals whose sup¬
port has been enormously helpful. When¬
ever I felt the need for a broader perspec¬
tive, Ed Parrish, Tom Cain, Roy Russo,
and Duncan Lawrie were always willing
to share their thoughts and time. Their
experience, wisdom, and dedication to
the society are an invaluable resource.
Also, I would be remiss if I failed to rec¬
ognize Michael Elliott, the society’s ex¬
ecutive director. He has been a trusted
advisor and colleague.

Next month, Duncan Lawrie will suc¬
ceed me as Computer Society president. I
know Duncan shares my commitment to
helping the Computer Society continue
to serve the members and the computing
profession. Through the efforts of those
whom I have followed, and those, like
Duncan, who will follow me, I know the
society will remain healthy and strong.
And with the active involvement of the
membership, the future won’t just be the
way it used to be — it will be even better!

Helen M. Wood
Computer Society president

COMPUTER

AlsysAda cross-compilers
get you there in no time.

It’s time you knew that
Alsys, the premier Ada company,
offers a range of powerful and
flexible cross-compilers for all
microprocessors in the Motorola
MC680X0 and Intel i80X86
families* to get your applications
up and running fast.

Part of the reason for this
speed are powerful development
tools such as AdaProbe, a source
level debugger and program
viewer providing facilities to
address both the execution prop¬
erties of a program and its static
structure. In addition, there’s
support for placing program
components into ROM, and the
Alsys Multi-Library Environ¬
ment allowing program units to
be shared among libraries for
team programming.

With Alsys’ full line of
cross-compifers you’ll discover
impressive flexibility and power.
There’s a configurable run-time
system giving you full control
over tasTs, interrupts and all
components of your application.
The debugger and transfer utility
are configurable. Best of all, it’s
easy to take advantage of all this
power because there are only a
few files to modify.

When you need to get from
here to there without getting lost
somewhere in between, use a
cross-compiler that knows the
shortest route.

AdaNowJ

In the US: Alsys, 67 South Bedford Street, Burlington, MA 01803-5152,

Reader Service Number 7

MIT

Systems Programmer
Laboratory

tor Computer Science
To maintain and improve a large soft¬
ware system written in Common Lisp.

HI The focus will be to modify and improve
the existing system.

Requirements: an MS in Computer
Science or a BS with a minimum of 3
years' experience. Expertise in
Common Lisp required. Familiarity
with Common Lisp on a variety of

Late Magazines?
No Magazines?
Membership
Status Problems?
No Answers
To Your
Complaints?

Let your
Computer
Society
Ombudsman'
cut
through
the red
tape
for you*
IEEE Computer Society
10662 Los Vaqueros Circle
PO Box 3014
Los Alamitos, CA

90720-1264

Editor-
in-Chiefs MESSAGE

Withdrawal
Symptoms

When you’ve enjoyed working with
talented, creative people for eight years,
saying good-bye can be a tough thing to
do. Such are the circumstances that I find
myself in now — finishing a four-year
tenure as editor-in-chief of Computer,
immediately after four years as editor-in-
chief of the then start-up magazine, IEEE
Software. After eight years of working a
part of every week with the technical ed¬
itorial content of these two magazines, I
cannot help but muster up thoughts of
impending withdrawal symptoms. I face
a future of not being directly and inti¬
mately involved with the myriad of ac¬
tivities that comprise the “job” of an EIC
— working with authors, referees, guest
editors, department editors, and people
with and without vested interests; debat¬
ing issues and setting policy at the Maga¬
zine Advisory Committee; fighting for
page count and budget at the Publica¬
tions Board meetings; and on and on.

I entertain a certain amount of pride
as I look back on the birthing (IEEE Soft¬
ware) and technical growth (Computer)
that was accomplished during this time.
It obviously could not have been done
without the incredible dedication of a
host of editorial board members, depart¬
ment editors, and guest editors; a legion
of harassed authors and referees (who
undoubtedly heard the word “quality”
from me one too many times); and the
significant creative strengths and profes¬
sional work of the Computer Society’s
publications staff. All this was done, of
course, under the normal intensity of
deadline rush that permeates the publish¬
ing industry.

For the counsel, guidance, and insight
they have given me over these eight
years, I must thank True Seaborn and
Marilyn Potes of the Publications Office;

editorial board members (at one time or
another) Dennis Allison, Ted Lewis,
Richard Eckhouse, Edmund Gallizzi,
Yale Patt, Michael Evangelist, and Wiley
McKenzie; able advisers Roy Russo,
Oscar Garcia, Tom Cain, James Aylor,
and Ronald Hoelzeman; Computer Soci¬
ety executive director T. Michael Elliott;
and trusted friend and mentor Harold
Stone. Among the numerous referees
who did an exceptional job in refereeing
manuscripts is the new editor-in-chief of
Computer, Jon Butler of the Naval Post¬
graduate School.

Lastly, I must publicly thank the three
institutions that supported my efforts
during this time: the University of South¬
western Louisiana (three years), the Uni¬
versity of Hawaii (one year), and IBM’s
T.J. Watson Research Center (four
years). I had the benefit of talented assis¬
tants at each institution: Pat Rees and
Stephanie Denton at USL, Stacy Hunt at
UH, and Faith Compo at IBM. They all
added value to and took pride in what
they were doing. I sincerely thank the
Computer Society for giving me this op¬
portunity to do something that was thor¬
oughly enjoyable for such a long period
of time.

Bruce D. Shriver
Editor-in-chief

COMPUTER

ASIC'91
Fourth Annual IEEE International

ASIC Conference and Exhibit
(formerly ASIC Seminar and Exhibit)

September 23-27, 1991
Rochester Riverside Convention Center

Rochester, New York 14604
Sponsored by the IEEE Rochester Section in cooperation with the IEEE Computer Society

CALL FOR PAPERS, WORKSHOPS, and TUTORIALS

IEEE

he international ASIC Conference and Exhfoit is organized to promote the practice of ASIC engineering by providing ASIC and systems level
ingineers/scientists and managers with knowledge of the toots and techniques required in all phases of ASIC design and implementation, it emphasizes the
inderstanding of practical issues, technical details, tradeoffs and economics of system integration using standard cell, gate array, programmable

r, cell compiler, and full custom techniques In both the digital and analog domains. The conference oilers:
n in-depth introduction to ASIC implementation lor the systems engineer, (2) An advanced program for the experienced ASIC practitioner,
t forum for ASIC users and vendors to share case design experiences, and (4) Executive overviews of ASIC trends, strategy, economics and

xmrpetitiveness.

Proposals to organize Workshops, Tutorials, or Sessions are invited.

rechnlcal papers to cover ASIC applications in the following areas are solicited.
ASIC Design & Applications: HDTV systems, Medical electronics. Auto ASICs, Communication ASICs, Image processing, Electro-optics interlace

ASIC CAD Tools and Simulation: Schematic capture, VHDL, Logic A timing synthesis, Simulation models. Cell libraries, Performance evaluation.

ASIC Testability A manufacturing: Circuit testing. Reliability, Fault tolerance, ATPG, Multichip modules, and Packaging technology.

Economics and Management of ASIC Projects: Cost analysis A comparison, Benchmarking, Marketing, Scheduling. Technology impact.

Mixed Signal ASIC Design: Mixed analog/digital design, testing, modeling, interfaces, and simulation.

ASIC Education: Training programs in VHDL. Simulation, CAD tools, Course development in both industry and universities.

* Programmable Logic Devices: FPGA, PLA, PAL, Technology and applications.

Workshops (Sep 23, 24) Four or eight hour technical workshops covering ASIC design knowledge and skills. Proposals to form these
workshops for either introductory or advanced level are invited. ASIC industry, as well as universities are encouraged to submit
proposals for consideration. Contact the Workshop Chairman: _
Dr. Lionel J. D'Luna, MC-02036, Eastman Kodak Company, Rochester, NY 14650. Phone: (716) 477-8386. Fax: (716) 477-4947

Tutorials: Proposals are solicited for one or two hour educational tutorials covering ASIC fundamentals, mixed signal design, timing and
logic synthesis, design for testability. VHDL. managing ASICs, and manufacturing considerations. Contact the Tutorial C" !
Glen W. Brown, MC-02015, Eastman Kodak Company, Rochester, NY 14650. Phone: (716)722-4755. Fax: (716) 477-4947

INSTRUCTIONS TO AUTHORS:
Authors for papers, tutorials, and workshops sre asked t
and a 50 word abstract, typed single-spaced on a 8-1/2 x
mailing address, telephone number and telex/fax MUST appear on the s
2) The purpose of this work; 3) The major contributions to *» '

v package, which includes a 500 word sum
n purposes. Author's name, affiliation, complcti
ry should clearly state: 1) Title of the paper

s and their significance; and 5) Technical area

HIGHLIGHTS
Workshops (2 days)
Tutorial Sessions
Technical Papers
Technical Exhibits
Proceedings of Papers/Tutorials
Evening Panel Discussion
Spouse Program

Send Technical Proposals to:
Lynne M. Engelbrecht
ASIC Conference Coordinator
170 Mt. Read Blvd.
Rochester, NY 14611
Phone: (716)328-2310
Fax: (716)436-9370

* Summaries and proposals deadline: March 1, 1991.
* Notification of Acceptance: April 15, 1991.
* Final Camera Ready Manuscript by June 10, 1991,

Further information may be obtained from:

Conference Chairman
Dr. Kenneth W. Hsu
Rochester Institute of Technology
Computer Engineering Department
Rochester. NY 14623
Phone: (716) 475 - 2655
Fax: (716) 475 - 6879

Technical Program Chairman
Dr. Y. Tim Tsai
Eastman Kodak Company
MS 02015
Rochester. New York 14650
Phone: (716) 722 - 4896
Fax: (716) 477 - 4947

P.R. Communications
469 Blossom Road
Rochester, New York 14610
Phone: (716) 288-7900
Fax: (716) 288-7909

Comp con Is The Longest; Established Computer Conference
Providing A Complete Update Of The Most Timely Trends And

Developments In Computing.

-

Technological Updates Provide Personal Insights
From Industry Leaders In A One-hour Format

Technical Sessions Provide Presentations
In A 90-minute Format

Tutorials Provide In-depth Technical Presentations
In An All-day Format

Some Conference Highlights And Notable Topics

•Trends In UNIX Software

•Desktop SPARC Systems

•Towards The Single Chip PC

• Protection For And Against
Information

• Intergraph SuperScalar Clipper

• 100 MIPS Processors

•The MPEG Standard

•Survey Of Computing In Japan

•Parallel Computing

•Next Generation H-P RISC
Workstations

•DECstation 5100

•SQL Access: DataBase
Interoperability

•New SIMDArchitectures

•Handwriting And Text Recognitioi

•Multi-Media

•Object Oriented Technology

•Video Processors & Multi-Media

Technological Updates
From Industry Leaders

Towards 1015 MIPS
By Eric Drexler

America's Answer To Foreign Competition:

The Entrepeneur And Inventor

By Gilbert Hyatt

Virtual Reality:
A Computer Science Perspective

By Jaron Lanier

Televisions Of Tomorrow:

Signals With A Sense About Themselves
By Andy Lipman

Special All Day Tutorials

Computer Architecture Choices
By Yale Patt

MACH Distributed Operating System
By David Black

Fundamentals Of X Windows &
User Interface

By Chuck Clanton

Case Tools For Requirements

Analysis & Software Design
By John Brackett

The Future Of Supercomputing
By Stephen Lundstrom

Transaction Processing Concepts

& Techniques
By Jim Gray

Role Of GaAs In Digital Design
By Lou Tomasetto

VHDL- Hardware Design Language
By Stan Mazor

Registration Information

When: February 25 through March 1,1991

Where: Cathedral Hill Hotel, Van Ness at Geary, San Francisco
For Hotel Reservations: (415) 776-8200 Mention COMPCON 91

For Conference Registration (415) 423-3490 Ask For COMPCON

Or Send Email To: compcon91@lbl.gov

Prices: Conference: Members $250 by Feb. 8, $285 after Feb. 8
Non-Members $325 by Feb. 8, $360 after Feb. 8

Tutorials: Members $250 by Feb. 8, $285 after Feb. 8
(each) Non-Members $325 by Feb. 8, $360 after Feb. 8

One Day Conference Rate: $150 Members
(at conference only) $210 Non-Members

See The lanuary 1991 Issue Of Computer For The Advance Program

See The January 24th Issue Of Electronic Design For Conference Features

Do you practice Yourdon/DeMarco Structured Analysis?

Do you need to produce high quality DFD’s?

Do you need a tool that fits your budget?

Then MacBubbles™ was made for you!

MacBubbles supports the process of structured analysis with:

Facilities for creating, modifying, leveling and expanding DFD's
A Data Dictionary that maintains and lists full where-used information
Automated balancing checks for DFD's and minispecs

MacBubbles improves productivity:

Easy to learn

Easy to use

Responsive

MacBubbles is economical:

Single copy price $779.99

Multi-copy discount available

Demo disk $25.00

MacBubbles requires:
A Macintosh Plus or SE
Two floppy drives or a hard disk
A LaserWriter for high quality output Silver Spring, MD 20902-3619

(301) 946-0522
Reader Service Number 3

Do Parallel
Languages Respond

to the Needs of
Scientific Programmers?

Cherri M. Pancake, Auburn University

Donna Bergmark, Cornell University

The interest of computer scientists
in parallel programming began in
the area of operating systems, where

program segments executed independent¬
ly in real or simulated parallelism. As par¬
allel technology evolved, new research
efforts were devoted to exploring the ef¬
fects of nondeterminism in computational
systems. Most current research in parallel
programming concerns techniques for
specifying and controlling concurrency.
From the modeling of networks to the de¬
velopment of parallel algorithms, concur¬
rency is an integral feature of program
development and is taken into account
from the earliest stages of design.

Computational scientists approach par¬
allel programming in a different way. Al¬

though the physical world they model is
inherently parallel, scientific programmers
have become accustomed to using sequen¬
tial techniques for its study. Their interest
in parallelism evolved from the desire to
improve the performance of sequential al¬
gorithms applied to large-scale numerical
computations. These users want to take
advantage of the computational power pro¬
vided by multiple processors, not the ef¬

fects of concurrency. They view nondeter-
minacy as an undesirable side effect rather
than a property to be explored. Instead of
integrating parallelism into the design pro-

Scientific researchers

don’t develop parallel

programs the way

computer scientists do.

This article explains

why existing languages

may not provide

enough support for

scientific programming.

cess, they incorporate it after the fact to
speed up applications that were tested and
debugged in a sequential environment.

Scientific researchers seem to view the
future of parallel computing with optimism,
as demonstrated by their enthusiastic re¬
sponse to the increasing availability of
parallel facilities. At the Cornell National

Supercomputer Facility, for example, par¬
allel processing capability tripled during
the past three years, while parallel process¬
ing usage (in terms of CPU hours) in¬

0018-9162/90/1200-0013$01.00 O 1990 IEEE

creased 22 times. Nevertheless, research¬
ers estimated that only one in 20 user pro¬
grams executed on the facility’s 12-pro¬
cessor supercomputer complex is parallel.1

User surveys indicate that many more
applications could take advantage of mul¬
tiprocessing capabilities were it not for the
difficulty of reformulating sequential
code. Parallelizing compilers offer a fast
and convenient way to incorporate con¬
currency, but the speedups achieved by
automatic transformations alone are disap¬
pointing. Hand-coded parallelism, on the
other hand, is both difficult and time-
consuming. As a result, parallelism remains
inaccessible or underutilized by most of
the user community.

It is not clear how easily or effectively

parallel techniques can be integrated into
the scientific programming process. Criti¬
cal concerns include the extent to which
existing sequential programs can be con¬
verted to parallel form, how successfully
the results can be ported to other systems,
and how easily program components can
be reused in building new applications.

This article considers parallel program¬
ming from the viewpoint of scientific re¬
searchers, focusing on their requirements
for language support and considering a
number of questions. How do scientists go
about developing parallel applications?

13 December 1990

What role does language play in determin¬
ing the success of their programming ef¬
forts? How much should scientific pro¬
grammers be expected to know about
parallel languages and machines? What
can computer scientists do to facilitate par¬
allel scientific programming?

The discussion centers on the “main¬
line” supercomputers for scientific and en¬
gineering applications:2 vector and scalar
MIMD (multiple instruction, multiple data)
multiprocessors. Other high-performance
architectures — notably SIMD (single in¬
struction, multiple data) — have gained
popularity with certain segments of the

scientific community, but their use is not as
widespread and the language support is not

Most parallel scientific computing is still
carried out on general-purpose computers
at facilities that are subsidized by federal
or state agencies (such as the National
Science Foundation’s supercomputing
centers, state supercomputing centers, and
the national laboratories). What’s more,
their long history means MIMD systems
and the associated software have attained a
higher level of product maturity. Although
the languages and tools developed for SIMD

and other new architectures may prove to
be ideal for many scientific applications,
the issues of software support are still
emerging.

Programming as
problem solving

Scientists employ computation for solv¬
ing problems related to the physical world.
Like other tools, the computer imposes
restrictions on the way the problem is for¬
mulated for solution and the types of solu¬
tions that are possible. We cannot appreci¬
ate the difficulties confronting the scientific
programmer without understanding the
problem-solving process itself. Program
development involves a series of steps:

• delineation of the problem domain
and selection of a problem-solving
strategy,

• formulation of an algorithmic solu-

• implementation using a programming
language,

• translation of the program into execut¬
able form, and

• program execution.

This problem-solving system can be
characterized as four subsystems operat-

Domains Solutions

Conceptual

Algorithmic

Implementation

Physical

Model

Abstract entities
Logical associations

Abstract values

Algorithm

Data objects
Abstract operations
Constructed values

Program

Data structures
Primitive operations

Basic values

Storage locations
Physical operations
Bit-pattern values

Figure 1. Problem-solution system.

ing at different levels of abstraction (Fig¬
ure 1). Each subsystem defines its own
collection of objects, a set of operations or
manipulations applicable to those objects,
and domains representing the values each
object may assume.

Conceptual level. The conceptual so¬
lution occupies the highest level in Figure
1. Here, the problem is expressed in the
abstract terms of human reasoning and our
perception of the laws governing nature.
The solution can be portrayed in terms of
abstract entities, logical association among
entities, and the attribution of abstract val¬
ues. The problem-solving strategy is out¬
lined in very general terms, without regard
to the capabilities of the system on which it
will be implemented. The description is
usually in the form of natural language text
or diagrams.

Consider, for example, an application of
dynamic programming to model the orbital
control of satellites. The satellite is equipped
with tiny motor devices that must be fired
in strict coordination to effect a change in
direction or positioning. The control to be
exerted is nonlinear. This problem subdi¬
vides naturally into two phases: a “forward
sweep” to simulate the application of some
control policy, and a “backward sweep” to
calculate the effects of the policy, using

cost/gain analysis to select a successor
policy. Processing will continue iterative¬
ly, with each successive policy more re¬
fined, until some threshold of optimality
has been reached.

The diagram of Figure 2 represents a
conceptual solution. The problem entities
are abstracted collections of data, associat¬
ed logically in terms of the control policy
that will be applied and refined in succes¬
sive iterations. A through E are collections
of values, representing systems of equa¬
tions that must be solved to determine the
effects of the control policy.

It is at this level that the programmer
determines which portions of the solution
are candidates for parallelization. Since a
scientific user has speedup in mind, atten¬
tion is focused on computationally inten¬
sive activities. Whenever the activities are
logically independent (for example, trans¬
formations on B, C, D, and E at the start of
the backward sweep), they can be grouped
and marked for simultaneous execution.
Similarly, when a collection of calcula¬
tions is to be applied to independent data
subsets (for example, the plane-wise trans¬
formations of A), the instructions can be
replicated across multiple processors.

Although the degree of parallelism is
limited by the number of physical proces¬
sors available, this is not reflected in most
conceptual solutions. Instead, the pro¬
grammer identifies the maximum degree
of parallelism that seems “natural,” given
the logical constraints of the problem. Fig¬

ure 2 therefore shows execution streams
(the computational boxes) that dynamically
vary in number from one to four. No attempt
is made to indicate what should be done
with processors during the periods when
they are not needed, nor how the solution
should be altered if fewer than four pro¬
cessors are available.

Scientific users know that parallel exe¬
cution can incur a substantial amount of
hidden overhead. The special consider¬
ations involved in determining whether or
not parallelization is warranted for a par¬
ticular task on a particular machine, how¬
ever, are beyond the experience of most
applications programmers. (Compare the
examples in references 3, 4, and 5.) These
programmers are likely to assume that any
sufficiently time-consuming activity that
meets the criterion of computational inde¬
pendence can be parallelized effectively.

Algorithmic level. Below the concep¬
tual level in Figure 1 is the algorithmic
solution, which defines the specific steps
that are required to solve the problem.

14 COMPUTER

Although the operations may still be some¬
what abstract, they are applied to data
objects (such as a matrix) with specific
ranges of values.

Although many scientific models, like
the physical world they represent, are in¬
herently parallel, the formulation of algo¬
rithmic solutions typically involves a se¬
quential approach. Steps are expressed as
“find x such that y" rather than “accom¬
plish actions x, y, z concurrently within time
t.” A notational form is chosen on the basis
of appropriateness to the logical model
rather than any relationship to the comput¬
ing environment in which the solution will

be carried out.
In our satellite example, the general al¬

gorithm — an application of dynamic pro¬
gramming techniques — subdivides into a
series of subalgorithms. Figure 3 repre¬
sents a portion of the specification for the
backward sweep, where the eigenvalues of
matrix D are calculated using the cyclic
Jacobi method. As in most scientific pro¬
grams, a widely published numerical
method has been employed to reduce the
amount of programming effort required
and to improve the reliability of the results.

The nature of the algorithmic specifica¬
tion reflects the fact that problem solution
will be carried out on a computer. The
choice of subalgorithms may also be influ¬
enced by a consideration of how many
physical processors will be available and
whether memory will be shared or distrib¬
uted. At this level, however, the descrip¬
tion is generally machine-independent (that
is, not tied to any particular architecture or
operating system).

There is generally no explicit mention of
parallelism in the algorithmic solution.
Although recent years have seen increas¬
ing interest in numerical methods designed
to exploit multiprocessing capabilities, es¬
tablished techniques are still almost exclu¬
sively sequential. Consequently, each
subalgorithm is described as a single se¬
quence of steps. If parallelism occurs at
this level, it is limited to the notion that two
subalgorithms may be allowed to proceed

concurrently.

Implementation level. Between the al¬
gorithmic and physical levels in Figure 1 is

the implementation solution, which serves
to bridge the gap between the representa¬
tion of the problem as abstract manipula¬
tions and as the physical operations to
perform those manipulations. Here, the
problem is reexpressed in the terms sup¬
ported by a programming language: data
structures, primitive operations, and basic

Figure 2. Example of conceptual solution for satellite control.

Calculate eigenvalues of matrix D, using the cyclic Jacobi method to transform

D to diagonal form.

1. Select dp the next nonzero element in a predetermined traversal of the
entries above the diagonal.

2. Choose value for 0 such that dtJ can be reduced to zero:

a. If <4 = dIt, 0 = sign (d,j) ■ 0comMiM
else 0 = 1/2 arctan • (2d,j) / (du - dj,).

b. If 0 not within range, adjust: 0 = 0- sign (0) ■

2 ©constraint-

3. Construct the plane rotation matrix R.

4. Transform D : D nex* = R TDR.

5. Repeat from 1 until D is diagonal.

Figure 3. Algorithmic solution for one portion of the satellite example.

values. Since the purpose of this descrip¬
tion is to allow an automated translation to
machine code, the programming language
imposes a rigorous formalism. At the same
time, the language may be far removed
from the functional capabilities of the
physical system in order to provide expres¬
siveness, generality, and portability.

This phase in program development is
the most challenging. The programmer must
devise concrete representations of all
problem data and describe them using the
restrictive notation of the programming
language. The steps of each subalgorithm
must be expanded as well; what were pre¬
viously high-level equations or operations

December 1990

SUBROUTINE EIGEN(A,DIMEN,MAXIT,TOL,TCONSTR)
INTEGER ITER, MAXIT, DIMEN, ...

LOGICAL CONVRG
REAL TOL, EFFZERO, THETA, TCONSTR, ...
REAL A(DIMEN, DIMEN)
PARAMETER (EFFZERO = IE-10)
DO 100 ITER =1,MAXIT

DO 1101= LDIMEN-l
CONVRG = .TRUE.
DO 120 J = 1+1,DIMEN

C Ignore next element if too small
IF (ABS(D(I,J)).LE.TOL) GOTO 120
CONVRG = .FALSE.

C Set new Theta
IF (ABS(D(I,I)-D(J,J)).GT.EFFZERO) THEN

THETA = ATAN(2*D(I,J)/(D(I,I)-D(J,J))/2
IF (ABS(THETA).GT.TCONSTR) THETA =
THETA-SIGN(2*TCONSTR,THETA)

ELSE

THETA = SIGN(TCONSTR,D(I,J))
ENDIF

C Construct plane rotation matrix

C Perform transformation

120 CONTINUE
110 CONTINUE

C Check for convergence
IF (CONVRG) RETURN

100 CONTINUE
C Maximum iterations exceeded - activate error handler

Figure 4. Implementation solution corresponding to the algorithm of Figure 3.

are now specified in detail via control
structures and statements. Since compil¬

ers often extend the programming lan¬
guage to take advantage of architecture-
specific features, the description may be
somewhat machine-dependent. Figure 4
represents a portion of the Fortran 77 code
used to implement the eigenvalue sub¬
algorithm.

The algorithmic solution may require
considerable massaging due to the re¬
quirements of computer arithmetic. To

ensure that processing will terminate, se¬
ries calculations must be truncated. Trun¬
cation is performed here by comparing
array elements with the predetermined tol¬
erance TOL prior to using them as the
basis for transformations. As a safety mea¬
sure, calculations may be forcibly termi¬
nated; here MAXIT sets a limit on the
number of iterations permitted. Compara¬
ble efforts are needed to deal with round¬
off and cancellation errors caused by a
lack of numeric precision. Finally, the

Figure 5. Subdivision of implementa¬
tion into serial and parallel phases.

stability and conditioning of each numeri¬
cal method must be taken into account.

In the example of Figure 4, there has
been no attempt to improve efficiency by
restructuring the program code with tem¬

porary variables to eliminate array access¬
es. The algorithm itself could be improved

to reduce computation by performing only
partial matrix multiplications. Scientific
programmers typically concern themselves
with developing a functional solution,
leaving improvement activities until later.

For similar reasons, no parallel constructs
are shown, although parallelism must
eventually be incorporated at this level of
description. Most scientists develop se¬
quential implementations first, adding par¬
allel features once they are confident that
the solutions work. In effect, the imple¬
mentation solution subdivides into two
phases: serial and parallel (Figure 5). Since
the effects of the programming language

are felt throughout the implementation
process, we will discuss the role of the
language before examining how parallel¬
ism is actually incorporated.

We do not discuss the physical level of
our problem-solving system here because
this level is not under the direct control of
the programmer.

The impact of language

Multiple restructurings complicate pro¬
gram development. The initial, abstract
model for problem solution must be refor¬
mulated by the programmer as an algorith¬
mic solution, transformed manually into
program code, and translated automatical¬
ly into executable code. In addition to im¬
posing development overhead, each re¬
structuring is a source of potential error
and distortion. In particular, the effective¬
ness of each restructuring—and summarily,
of program development as a whole — is
bounded by factors related to how the map¬
ping is accomplished (Figure 6).

The first and third transformations pose
no special problems. The first, carried out
at a logical level, is bounded by the pro¬
grammer’s ability to decompose an ab¬
stract model into a sequence of suitable,
high-level representations and operations.
This is the most comfortable and best un¬
derstood restructuring for the scientific
programmer. What’s more, the increasing
availability of published methods for stan¬
dard numerical computations has stream¬
lined the process. The third transformation
has also benefited from past research and
experience. Its effectiveness, bounded by
the accuracy of the mapping from language
constructs to machine instructions, relies
on compiler technology that is largely be¬
yond the control of the programmer.

The second transformation, on the other
hand, poses special difficulties for the sci¬
entific researcher. Since it involves a

16 COMPUTER

translation from logical to quasi-physical
form, its success relies on the program¬
mer’s understanding of computational
methods. No automated tool can repair
incorrectly stated algorithms or compensate
for ill-chosen numerical techniques.

The user’s level of programming exper¬
tise and experience in developing similar
applications are also important. In many
cases, however, the most critical factor is
the programming language itself. Language
provides a framework for describing how
the problem’s solution will be achieved.
Ultimately, even the most qualified pro¬
grammer must depend on language fea¬
tures to bridge the “semantic gap” between
logical and physical problem solution.

Programmers have long been aware that
language design has significant impact on
how easily an algorithm can be transformed
into workable code. Few would elect to
implement list-processing software in For¬
tran or computationally intensive matrix
algorithms in Lisp. Even the so-called
general-purpose languages are recognized
as being suited to certain problem-solving
approaches. It is always possible to con¬
struct an accurate implementation using an
inappropriate language. The transforma¬
tion process is more tedious and error-
prone, however, when the conceptual
models supported by the language relate
only peripherally to the problem-solving
model of the programmer.

More than 15 years ago, Wirth reflected
that the goal of a programming language

is to provide a framework of abstractions and
structures that are appropriately adapted to
our mental habits, capabilities, and limita¬
tions.... A form must be found for these
facilities which is convenient to remember
and intuitively clear to a programmer, and
which acts as a natural guidance in the
formulation of his ideas.6

If an appropriate high-level structure is
available, users can take full advantage of
the compiler’s semantic checking as a
safeguard against many forms of runtime
errors. The use of clearly defined language
structures also makes it possible to achieve
an acceptable degree of independence from
the underlying architecture. This approach
allows the porting of programs from one
system to another, as well as accommodat¬
ing system upgrades or other modifica¬
tions. Finally, when language syntax cor¬
responds closely to the problem domain,
program code more visibly reflects logical
concepts. This facilitates debugging and
improves the likelihood of reusability.

Methods for improving the effective¬

1 Model 1 Transformations

Programmer's ability
to decompose
model into
component actions

Algorithm

Suitability of language
to express algorithm

Programmer's under¬
standing of language,
computational methods

Program

Accuracy of
language/machine
instruction mapping

Efficiency of
, generated code

| Process |

Figure 6. Limitations on the effective¬
ness of program development.

ness of sequential program development
reflect the multilayered organization of
programming activities. Formal design
methodologies are used to structure the
conceptualization process so the conver¬
sion to programming language constructs
will be more straightforward. This is the
equivalent of moving the algorithmic solu¬
tion closer to the implementation. Pro¬
gramming language designers often take
the opposite approach. By introducing more
abstract language features, they elevate the
implementation solution, shifting trans¬
formation responsibilities from the pro¬
grammer to the compiler.

Such fine-tuning of a programming sys¬
tem is possible precisely because of the
clear delineation between the two levels of
transformation. This property, referred to
as logical independence, represents a com¬
mitment to maintaining a separation be¬
tween machine-dependent and machine-
independent factors. With few exceptions,
today’s sequential programming lan¬
guages shield the programmer from imple¬
mentation details. At the same time, in¬
creasing efforts are devoted to support the
user’s mental models through provision of
such features as abstract data types and
predefined collections of reusable modules.

Commercial and public-domain software
libraries extend the capabilities of pro¬
gramming languages by offering con¬
venient, efficient, and reliable numerical
techniques for a wide range of disciplines.

The lessons of three decades of sequential
program development are clear: Program¬
mer effectiveness improves when language
structures are moved away from physical
issues and toward logical models.6'7

Language support for
parallelism

The introduction of parallelism compli¬
cates the physical end of program imple¬
mentation. The programmer is now con¬
cerned not just with data objects and
operations, but also with the interaction
and relative timing of independent entities.
What activities can be carried out in paral¬
lel? What data must be shared among them?
Experienced programmers realize that ef¬
fective parallelization involves other is¬
sues as well. How can the work load be
distributed to minimize processor idle time?
How can processor activities be coordi¬
nated? How can the correctness of data
values be ensured when the order of access
is unpredictable?

Once again, the programmer must rely
on the programming language to describe
how parallelism is to be incorporated, but
now language support can be implicit as
well as explicit. Parallelization is implicit
when the compiler can recognize poten¬
tially concurrent portions of a sequential
program and generate parallel code. Im¬
plicit parallelization requires extensive
analysis of the dependencies among data
items and cannot guarantee an optimal
solution. Although parallelizing compilers
have been cited as a promising direction
for the future, the versions currently in
production have limited capabilities. Recent
studies challenge the usefulness of this
approach.7'9

Parallelism becomes explicit when the
programmer must specify the nature and
extent of concurrent activities through lan¬
guage constructs. Three mechanisms have
been used to support parallel capabilities:

• incorporating parallel features as inte¬
gral parts of a language’s design,

• adding parallel extensions to an exist¬
ing sequential language, and

• providing high-level interfaces to par¬
allel routines stored in a system
library.

Concurrent languages. Integrating
parallelism directly into the design of a
concurrent programming language offers
the best chance for clear and unified sup¬
port of conceptual models. This approach

December 1990 17

maximizes the potential for automatic er¬
ror detection and facilitates the develop¬
ment of effective debugging tools. Occam,
Ada, Concurrent Pascal, and Parlog are
examples of languages in which a signifi¬
cant number of structures are devoted to
supporting parallelism. Other languages
such as PL/I, Mesa, and Algol68 integrate
parallel features in the original language
definition, but on a much simpler scale.

Unfortunately, experience has shown
that it is extremely difficult to design
features that are both generally applicable
and easy to use. Furthermore, the costs of
developing applications are not limited to
the acquisition of a suitable compiler. The
programmer must learn a new philoso¬
phy of program development as well as a
new language structure. Any existing code
segments must be reformulated and
recompiled.

Language extensions. Sequential lan¬
guages can be extended to handle parallel¬
ism by the addition of compiler directives
or macros. This approach clearly facili¬
tates the parallelization of “dusty deck”
programs (codes that have been in use so
long that there is little or no documentation
on how they were developed). The learn¬
ing curve is also much better, since the
programmer need only assimilate a few
structures and identify the situations when
they are appropriate. Parallel Pascal, Con¬
current C, Multilisp, and most of the paral¬
lel Fortrans fit into this category. The pri¬
mary disadvantage is that it is extremely
difficult to integrate parallel constructs
cleanly and logically.5'10

When the extensions are implemented in
the form of macros handled by a preproces¬
sor, many of the compiler’s error-checking
capabilities must be sacrificed. Other
problems include a strong machine- and
dialect-dependence, resulting in decreased
portability. Extensions may also interfere
with existing compiler optimizations.

Runtime libraries. Libraries of parallel
routines offer the advantage of language
independence. Since they are not tied to
any particular compiler, library routines
can eliminate the need to rewrite or recom¬
pile programs when a system is modified.
The library is simply replaced by a new
version. Several versions of Fortran and C
for parallel machines rely on high-level
interfaces to libraries. The use of runtime
routines is awkward and error-prone, how¬
ever.3'410 Parameter lists must be bulky to
compensate for the fact that library units

execute in isolation from the general pro¬

gram context.
Debugging is difficult since there is no

clearly defined relationship with program
structure or semantics. Another disadvan¬
tage is that, although the library approach
appears to provide an easy means of inte¬
grating portability (by just recoding the
library routines and leaving the invoking
programs alone), this is not necessarily
true. Parallel libraries often have such close
ties to system architecture that porting pro¬
grams to other machines results in ineffi¬
cient or unreliable performance.

What scientists choose. Of the three al¬
ternatives for language support discussed
here, scientific programmers rely on lan¬
guage extensions orruntime libraries. There
are several reasons for this. First is the
availability of production-level compilers
for parallel machines. Manufacturers typ¬
ically support Fortran (and recently, C) for
scientific programming, but not the newer
concurrent programming languages. The
cost of developing translators makes ex¬
tension of a previously supported language
more attractive. Compiler availability still
remains an issue when parallelism is sup¬

ported by a language-independent library,
since a compiler is needed to generate the
code invoking the routines.

Familiarity is a second consideration.
For practical reasons, an applications pro¬
grammer is more likely to continue using a
language than to learn a new one, even
when it offers more expressiveness or flex¬
ibility. The continuing popularity of For¬
tran for large-scale numerical applications
is due to the fact that most scientists and
engineers learned to program in this lan¬
guage. The use of language extensions or
libraries reduces the number of new con¬
structs that must be learned and applied.

Yet another factor is the apparent ease
with which sequential programs may be
parallelized using extensions or libraries.
What could be more straightforward than
to add parallelism by inserting special
statements or subroutine calls? Although
this may not, in fact, be an easy or effective
way to develop parallel programs, users
find it practical. They are confident that
inserting the “right” statements will pro¬
duce the same results as the original pro¬
gram, and at a much faster rate.

There are other reasons that concurrent
languages have not enjoyed much success
among scientific users. Most were designed
in response to the needs of the computer
science community (that is, exploiting
concurrency). Features for large-scale nu¬

merical calculations are underdeveloped.
Even when numerical capabilities are ade¬
quate, the scientific user is faced with the
need to learn a new approach to program¬
ming, since these languages represent rad¬
ical departures from familiar structures.
Switching languages also requires the re¬
coding of substantial numbers of existing
applications and limits the sharing of code
with colleagues.

It can be argued that programmers should
change in order to employ parallelism ef¬
fectively, but the fact remains that they are
reluctant to do so. Few users are willing to
make this kind of investment without hard
evidence that the new language will pro¬
vide significant benefits for their types of
applications on their particular machines.

This user predilection for extensions and
libraries compromises the structural integ¬
rity of parallel programs. Instead of de¬
signing and implementing the program with
parallel behavior in mind, parallelism is
added after the fact in an ad hoc fashion. Not
only does the process add yet another re¬
structuring to program development, it
invites other problems as well. Since the
programmer believes that the sequential
program was correct, testing of the parallel
version may not be thorough. In addition,
the current state of commercial language
support — vendor-specific extensions or
libraries — means that even the most por¬
table sequential code will become machine-
dependent in its parallel form.

Parallelizing scientific
code

In Figures 7 and 8, portions of the satel¬
lite example are parallelized. The language
is IBM’s Parallel Fortran (PF), but the
number and type of statements required are
similar to other parallel extensions of For¬
tran.510 The code in Figure 7 shows the use
of a parallel DO loop to apply a single set
of operations concurrently to different data.
This corresponds to the plane-wise trans¬
formation of array A during the backward
sweep.

Parallel loops are the most common form
of parallelization in Fortran programs. The
structure resembles a normal DO loop, with
the loop body subdivided to reflect the fact
that multiple processors will be involved.
The PF compiler automatically determines
how to assign iterations to processors. The
programmer, however, indicates which
statements should be performed for every
iteration (DO EVERY portion of the loop
body) and which should be executed only

COMPUTER

once per processor (DO FIRST and DO

FINAL sections).
The structure looks simple enough, but

the partitioning of data among iterations
can be tricky. The programmer must first
identify any variable used to accumulate
values within the loop. Each of these must
be replicated for the multiple processors by
declaring a new variable that is local to the
loop body (such as the PRIVATE variable
LTRANS, used for the accumulation of a
partial sum corresponding to the number of

transformations required).
Since Fortran provides no automatic ini¬

tialization of local variables, this must be
performed explicitly by the processor
owning the copy (such as in the DO FIRST
section). The situation is somewhat con¬
fused by the fact that most parallel Fortrans
assume that the index variable is implicitly
local and do not allow its declaration with¬
in the loop. The user must also ensure that
any variables that will be updated by more
than one processor are protected by a lock
(in the example, the LOCK on DO FINAL
ensures that ITRANS is accessed by only
one processor at a time).

The nondeterminism inherent in parallel
computing means that the results of a par¬
allel loop are uncertain when the values
generated by one iteration depend—directly
or indirectly — on those produced by an¬
other iteration. Several current compilers
can detect data dependences and inhibit
parallelization, but the user is responsible
for devising a solution. It is at this point
that most scientific programmers start
running into problems. Parallel Fortrans
offer few alternatives for managing data.
The programmer may be forced to make
redundant copies of data, use multiple levels
of indirection, or invent some other way to
outwit the compiler’s safeguards.

Figure 8 illustrates the code required to
perform distinct sets of operations in paral¬
lel. This corresponds to the initial portion
of the backward sweep, when four inde¬
pendent matrix computations are needed.
Individual processes, called tasks in PF,
must be created to perform the work. Note
that the compiler no longer assumes re¬
sponsibility for creating task units and as¬
signing them to processors. Instead, the
user must explicitly initialize tasks, map
them to the available physical processors
(the NPROCS intrinsic function determines
how many processors are currently avail¬
able), and assign work to them. The tasks
must also be terminated explicitly. Since
task operations are costly, the programmer
may find it more efficient to “save” tasks
needed later in the program. In our exam-

C Number of transforming operations will be counter
ITRANS = 0

C Loop structure will make use of as many processors as possible,
C up to the number of iterations (i.e., columns in array A)
C Each iteration transforms one plane

PARALLEL LOOP 810 I = 1,DIMEN
C Declare variables that must be private to each processor
C (the index I is private by default)

PRIVATE (LTRANS)

C Initialization for the iterations assigned to each processor
DO FIRST

LTRANS = 0

C Independent loop body code to transform A(I) plane
DO EVERY

DO 820 J = 1 TO DIMEN

LTRANS = LTRANS + 1

820 CONTINUE
C Add local sum to shared variable accumulating total transformations

DO FINAL LOCK
ITRANS = ITRANS + LTRANS

810 CONTINUE

Figure 7. Parallelized looping structure, satellite example.

C Use four processors if available
N = MAX(NPROCS(),4)

C Create and initialize tasks and save their IDs
C (they will be ready for scheduling work at the WAIT statement)

DO 5101= 1,N
ORIGINATE ANY TASK IDTSKS(I)

SCHEDULE TASK IDTSKS(I), CALLING INITIAL
510 CONTINUE

C Perform in parallel: B1 x B2, invert C, eigenvalues for D and E
WAIT FOR ANY TASK NXTTSK
SCHEDULE TASK NXTTSK,

* CALLING MATMULT(B1,B2,RESLT1)
WAIT FOR ANY TASK NXTTSK
SCHEDULE TASK NXTTSK,

* CALLING INVERT(C,CINV)
WAIT FOR ANY TASK NXTTSK
SCHEDULE TASK NXTTSK,

* CALLING EIGEN(D,DIMEN,MAXIT,TOL,TCONSTR)
WAIT FOR ANY TASK NXTTSK
SCHEDULE TASK NXTTSK,

* CALLING EIGEN(E,DIMEN,MAXIT,TOL,TCONSTR)
C Delay until all computations are complete

WAIT FOR ALL TASKS
C Terminate the tasks

DO 5201= 1,N
TERMINATE TASK IDTSKS(I)

520 CONTINUE

Figure 8. Parallelized subroutine invocation, satellite example.

December 1990 19

pie, the tasks would be initialized at the
start of the program and continued until all
successor sweeps are completed, rather
than being recreated at the start of each

sweep.
The parallelizing code in Figure 8 con¬

sists primarily of new statements, but the
functions to multiply and invert matrices
also had to be converted to subroutines to
fit the task invocation framework. More
radical alterations are required to share
data among tasks. In general, variables are
local to each task unless they are passed as
parameters or occur in global storage (called

COMMON in Fortran).
The programmer must include a lock or

equivalent mechanism to ensure that or¬
dering is preserved when a global variable

is referenced or altered by a task. These
concepts appear to relate well to data-stor-
age features in sequential Fortran. Conse¬
quently, many scientific programmers as¬
sume that a program may be safely
parallelized by adding a lock to each shared
variable. This is not usually true. The pre¬
cise meaning of local or global storage is
affected by a number of subtleties related
to the memory model of the parallel ma¬
chine. It may be necessary for the pro¬
grammer to distinguish variables that are
local to a subroutine invocation from those
that are local to a processor (which may run
two or more of the parallel subroutines).

Explicit copy operations may be required
to initialize these variables. Other state¬
ments may be needed to update COMMON
blocks explicitly; PF, for example, requires
that the user indicate whether COMMON
values should be copied at the beginning of
a parallel task, at the end, or both. These
notions are counter-intuitive to scientific
programmers, whose experience with
scoping and storage management has been
limited to the simple model of sequential
Fortran.

It is important to note that the structures
provided by PF are not at a consistent level
of abstraction. The parallel DO is high-
level, with implicit creation/termination of
tasks and load balancing among proces¬
sors; in some cases, the compiler may even
extend the lifetime of tasks between looping
structures to improve performance. The
subdivisions of the loop body provide im¬
plicit mechanisms for restricting the num¬
ber of times an operation is performed. An
implicit barrier is also created at the end of
the loop so that the processors wait until all
iterations are complete before continuing.

The parallel invocation of subroutines,

on the other hand, is quite low-level. The
programmer must explicitly control all task

operations and processor mapping. Since
there are no implicit timing or sequencing
mechanisms, any intertask coordination
must be accomplished using low-level
constructs based on events (synchroniz¬
ing signals sent from one processor to an¬
other).

Facilities for controlling access to data
are also provided at contradictory levels.
In the parallel DO construct, the LOCK
option uses an implicit lock to transform
DO FIRST or DO FINAL code into the
equivalent of a critical section (a sequence
of instructions that can be executed by only
one processor at a time). For parallel sub¬
routines, the user must explicitly create
and destroy a series of named locks. The
operations provided for managing locks
are so primitive that a lock’s identifier
must be passed as an argument if it is to be
shared by multiple tasks.

Although these examples are specific to
PF, similar inconsistencies exist among
other parallel language extensions. Even
the parallel libraries are guilty of mixing
high- and low-level structures at random
(see the Sequent Balance examples in ref¬
erence 3).

Restrictions on the nesting of parallel
constructs may require the reformulation
of sequential control structures as well. To
keep from nesting a parallel loop inside a
sequential one, for example, the program¬
mer may have to “unroll” the outer loop,
replacing it with multiple copies of the
statements forming the loop body. Other
restrictions may require that sequential
subroutines or functions be substituted in¬
line (replaced by a copy of the code in
which references to parameters have been
replaced by the corresponding actual ar¬
guments). Restructurings such as these
introduce many new possibilities for error
as well as affect readability.

The plight of the
programmer

All in all, scientific programmers are
unlikely to find language structures that
map cleanly to their parallelization needs.
This is disturbing because these users would
benefit most from the error detection and
comprehensibility provided by appropri¬
ate high-level features. Instead, parallel
compilers can find and report only the most
blatant errors. Programmers are forced to
juggle inadequately described and poten¬
tially dangerous operations. In many cases,
the compiler obeys directions even when
the code is likely to produce incorrect re¬

sults. This is effectively a leap backward in
time; as in the early days of Fortran, paral¬
lel features are closer to symbolic assem¬
bly code than to high-level constructs.

In addition, the primitives used to spec¬
ify parallelism are closely tied to the un¬
derlying machine. It has been demonstrated
that management of the architectural con¬
figuration determines to a great extent the
efficiency, effectiveness, and reliability of
parallel implementations.8 9 Unfortunately,

it is equally clear that full responsibility
lies with the programmer, who must now
be concerned with the optimal scheduling
and binding of processes to processors and
the distribution of data to memory
locations.311

Unlike the sequential programming en¬
vironment — where scientists learned to
develop applications — parallel systems
lack the buffering effect of logical inde¬
pendence. Parallelism should be incorpo¬
rated at a reasonable level of abstraction
rather than simply providing a notationally
convenient way of specifying what are, in
fact, machine-specific operations.

Although we look forward to the day
when real-world problems may be mapped
to parallel hardware seamlessly and auto¬
matically, the fact remains that parallelism
is still in the embryonic stage. Little is
known about effective techniques for con¬
ceptualizing and formalizing parallel
strategies. It’s not surprising that scientific
programmers entertain a number of mis¬
conceptions about parallel machines and
programs. In spite of their criticisms of
“von Neumann programming,” a large
majority of the user community still views
computation as a sequence of operations
that transforms data. Parallel processing is
correspondingly visualized as the simulta¬
neous execution of those sequences.

This “extended sequential” view of par¬
allelism is misleading. It implies that a
programmer need only partition the se¬
quential solution to achieve reliable and
repeatable results. This is not the case.12
The effects of nondeterminism on parallel
behavior are still being explored, and we
do not yet know how to harness this prop¬
erty reliably. According to McGraw and
Axelrod, “The fact that a [parallel] pro¬
gram functions correctly once, or even one
hundred times, with some particular set of
inputs, is no guarantee that it will not fail

tomorrow with the same inputs.”9
Misconceptions about the nature of par¬

allelism also lead to unrealistic perfor¬
mance expectations. Many users are con¬
fused when parallelization does not achieve
a speedup proportional to the number of

20 COMPUTER

Table 1. Desirable characteristics of parallel languages — two viewpoints.

Category For Scientific Researcher For Computer Scientist

Convenience Fortran 77 syntax
Minimal number of new constructs to learn
Structures that provide low-overhead parallelism

Structured syntax and abstract data types
Extensible constructs
Less need for fine-grain parallelism

Reliability Minimal number of changes to familiar constructs
No conflict with Fortran models of data storage and use
Provision of deterministic high-level constructs

(like critical sections, barriers)

Syntax that clearly distinguishes parallel from serial

constructs

Changes that provide clarification
: Support for nested scoping and packages

Provision of nondeterministic high-level
constructs (like parallel sections, subroutine
invocations)

Syntactic distinctions less critical

Expressiveness Conceptual models that support common scientific
programming strategies

High-level features for distributing data across
processors

High-level control over locality of data accesses
Parallel operators for array/vector operands
Operators for regular patterns of process interaction

Conceptual models adaptable to wide range of
programming strategies

High-level features for distributing work across
processors

High-level control over locality of work
Parallel operators for abstract data types
Operators for irregular patterns of process

interaction

Compatibility Portability across range of vendors, product lines

Conversion/upgrading of existing Fortran code

Reasonable efficiency on most machine models
Interfacing with visualization support routines
Compatibility with parallel subroutine libraries

Vendor specificity or portability to related
machine models

Conversion less important (formal
maintenance procedures available)

Tailorability to a variety of machine models
Minimal visualization support
Little need for “canned” routines

processors. Their failure to comprehend
the impact of architecture on program be¬
havior leads to problems with reusability
and portability as well.

Take, for example, the effects of the
machine’s memory model. Most scientific
programmers equate a shared memory
model with the single address space of
uniprocessing (that is, all processors have
equal access to all data values at all times).
This leads to the correct assumption that
explicit mechanisms must be used to pro¬
tect global data that will be modified. It
also leads to a fallacy responsible for many
program errors. Many shared-memory
systems do not actually provide a single,
homogeneous address space. Their hierar¬
chical distribution of data into levels (such
as local cache, shared cache, and extended
memory) means, at best, that some time
may elapse between the updating of a val¬
ue and its propagation throughout the
system. At worst, the programmer may be
held responsible for providing explicit
mechanisms to ensure that the values are

propagated correctly.
These programming challenges are

similar to those faced by scientific users
when they converted to vector systems. It

is important to note that it has taken a
dozen years for programmers to gain pro¬
ficiency with vectorizing compilers. As
Hack comments, “... the constraints have
become much more complex, while the
penalty for inefficient utilization of the
system is substantially larger.”11 Users need
language structures that encourage a real¬
istic approach to developing and testing
parallel applications.

If our arguments sound suspiciously

like the justifications for high-level pro¬
gramming languages and structured pro¬
gramming methodologies we heard two
decades ago, that is because parallel pro¬
gramming today faces similar problems.
In reflecting a low-level view of concur¬
rent execution that reinforces user mis¬
conceptions, parallel languages do the
scientific community a disservice. This
approach not only increases the frustra¬
tion and expense of program development,
but also raises questions about the reli¬
ability of program results. Furthermore, it
is short-sighted to tie program development
so closely to specific systems. By imple¬
menting parallelism in machine- and
translator-specific fashion, we limit the
program’s reusability as well as its appli¬

cability to the improved systems that lie
ahead.

The present level of language support
for parallel programming requires that the
user expend more effort in managing the
problem-solving resource than in actually
solving the problem. This may be a posi¬
tive factor for computer scientists. As Hudak
points out, “We as programmers usually
have more to say about a problem than just
the answer. We typically have a specific
data representation in mind and we might
know a better way to run the program on a
particular architecture.”13

The key here is that while computing
professionals should be able to apply con¬
figuration-specific expertise, it is counter¬
productive to expect the same of the gener¬
al user community. Support for scientific
applications is inadequate as long as paral¬
lelism must be expressed in terms of a
particular machine or memory model. Sci¬
entists turn to parallel processing in an
attempt to understand the physical world
through modeling and simulation. They
need language features that improve the
comprehensibility and accuracy of parallel
programs.

Table 1 summarizes the characteristics

December 1990 21

desirable in parallel languages, contrasting
the viewpoints of the scientific researcher
with those of the computer scientist. A few
features are needed by all parallel pro¬

grammers:

• facilities for performing I/O opera¬
tions over parallel channels;

• simple, orthogonal, and high-level
contracts; and

• compiler detection of common paral¬

lel errors.

In many ways, however, the needs of the
two user communities are distinct.

New directions

The problems facing scientific pro¬
grammers are being attacked from several
perspectives. Jack Dongarra and Dan
Sorenson of Argonne National Laborato¬
ries have developed a tool kit to increase
the portability of parallel programs.

The Schedule package provides a stan¬
dardized interface between the user and
the parallel Fortrans provided by major
vendors. The programmer begins with a
sequential Fortran program and identifies
any code that can execute in parallel by
encapsulating it in subroutines. A “data
dependency graph” is constructed to indi¬
cate how many replications of which sub¬
routines can ran in parallel and the order in
which they must be executed. The code is
then modified by replacing the subroutine
calls with invocations of Schedule rou¬
tines, which provide a system-independent
way to manage task creation, assign work
to processors, etc.

Although the concept is simple, pro¬
gramming with the tool kit can be ex¬
tremely complicated. Like parallel runtime
libraries, Schedule requires lengthy pa¬
rameter lists that bear little resemblance to
normal Fortran code. Another problem is
that the package adds an extra layer between
the user and the machine, which makes
error detection almost impossible. The
toolkit’s principal advantage is that it is
readily available as public domain software
through supercomputing centers and na¬
tional labs.

Dongarra and Sorenson also motivated
another project designed to increase the
portability of parallel scientific applica¬
tions. The developers of Linpack and Eis-
pack — popular libraries of routines for
linear algebra and eigen systems — have
joined forces with the Numerical Algo¬
rithms Group from Oxford University to

create a new library exploiting recent de¬
velopments in parallel algorithm design.
Their proposed product, Lapack, will make
efficient implementations of standardized
numerical techniques available on most
parallel systems.

A consortium called the Parallel Com¬
puting Forum has proposed a different
strategy to counteract portability problems.
The PCF includes all major supercomput¬
er manufacturers, with observers from na¬
tional supercomputing facilities. Its pri¬
mary effort has been the drafting of a new
standard definition for parallel Fortran
named PCF-Fortran. The goal is to pro¬
vide parallel extensions to Fortran 77 that
allow scientific code to ran quickly and
efficiently on a variety of machines. Since

all corporate members of the PCF will
implement the language, parallel programs
will be portable across a wide range of
architectures.

The small size and clearly delineated
goals of the PCF have contributed to a
spirit of cooperation among its members.
The PCF-Fortran draft standard was first
released for public review and comment in
August 1986 (four major revisions have
been issued since that time, the most recent
dated June 1990). The American National
Standards Institute subcommittee X3H5
will handle the standardization process.
The new draft is scheduled for initial re¬
lease in January 1991.

Language developers are also trying to
facilitate parallelization by providing par¬
allel features at higher levels of abstrac¬
tion. The PCF-Fortran standard extends
the functionality of parallel loops with
features that allow the programmer to in¬
dicate that execution of successor iterations
must delay long enough to allow a prede¬
cessor to generate some needed value. This
process takes care of many data-dependency
problems that plague current implementa-

Other interesting high-level constructs
include critical sections, single process
sections (code embedded in a parallel con¬
struct that will be executed by just one
processor) and parallel regions (designed
to provide low-overhead parallelism). Un¬
fortunately, PCF-Fortran continues the
tradition of combining high- and low-level
features in a random mixture.

Supercomputer Systems, Inc. — a com¬
pany formed by Steven Chen and other
members of the Cray X-MP design team
— has taken a novel approach to parallel
language design. Recognizing the need for
interaction between language developers
and target users, SSI initiated a collabora¬

tive effort with Cornell University. SSI
experts have devised a minimal set of
high-level language constructs needed to
parallelize existing scientific code. Cornell
staff evaluate the usefulness of the con¬
structs in large-scale applications carried
out by scientific and engineering re¬
searchers on the Cornell National Super¬
computer Facility. The insights gained
through actual experience are relayed back
to SSI in the form of recommendations and
user commentary.

One shortcoming of current parallel
languages is their concentration on fea¬
tures for dividing the work to be performed

in parallel; no high-level provisions are
made for distributing data. The proposed
languages that we describe perpetuate this
problem. New features were designed to
facilitate the control of program opera¬
tions, not to provide mechanisms for stor¬
ing and managing large quantities of data
for access by multiple processors.

The Linda system developed at Yale
University offers a revolutionary approach
to the problems of data sharing in parallel
programs. Linda is not a programming
language but a collection of operations
added to a sequential language to create a
parallel extension (like C-Linda, Fortran-
Linda, or Scheme-Linda).

Linda replaces the traditional concept
of program storage with an abstract model
of “tuple space.”7 When a process begins
to communicate or share data with another
process, it adds a new object to the tuple
space. The second process can then access
the information. The programmer does not
need to know anything about how the par¬

allel machine stores or shares data. Every¬
thing occurs transparently through the Linda
primitives.

Although Linda was originally used only
within the academic community, it now
appears to have gained the support of com¬
puter manufacturers. Cogent, for example,
recently announced development of C++
and Fortran versions to be compatible with
(and portable to) such competitive prod¬
ucts as Sequent’s Balance and Symmetry,
Encore’s Multimax, and Intel’s iPSC com¬
puters. This is a major step forward, since
Linda’s goal is to provide flexibility and
expressiveness for a variety of program¬
ming paradigms through machine-inde¬
pendent constructs.

Recent efforts in parallel debugging tools
also may have significant impact on scien¬
tific programming. Currently available
parallel debuggers generate extreme
quantities of low-level data. As the techni¬
cal difficulties confronting designers are

22 COMPUTER

resolved, however, more attention is being
given to the question of how information
should be presented to the user.12'14 New
techniques are emerging for abstracting
the performance data obtained through

static and dynamic analysis to provide a
high-level, graphical view of parallel
program behavior.

All of these developments offer
promise for the future of parallel
computing. More important, they

are evidence that a concerted effort is be¬
ing made to build on constructs already
familiar to the scientific user community.
This approach should benefit both sides of
the community. Developers will find wid¬
er acceptance of their products, while us¬
ers will enjoy a shorter learning curve.

Given the general lack of experience in
parallel software, it is not surprising that
scientific programmers are finding it diffi¬
cult to parallelize their applications. Pro¬
gramming languages constitute the prima¬
ry point of contact between scientist and
machine. Every effort must be made to
ensure that these languages benefit from
the proven strengths of the sequential ap¬
proach: (1) maintaining logical indepen¬
dence to shield the user from unnecessary
physical details; and (2) providing a clear,
consistent relationship between language
structures and the descriptive needs of the

The mechanics of program development
provide the added insight that extensions
to familiar sequential languages—through
parallel constructs or high-level interfaces
to libraries — are more likely to appeal to
scientific programmers than are new con¬
current languages.

It is our responsibility as computer sci¬
entists to look beyond our own experiences
in parallel programming. If parallelism is
to realize its full potential, we must under¬
stand the needs and expectations of the
user community and devise new ways to
facilitate the development of parallel ap¬
plications. As Bailey recently observed,
“We need to work harder at making super¬
computers not just connected to remote
locations but accessible to do science. Re¬
searchers must be free to concentrate on
their research, not struggle with [machine-
dependent] quirks and minute details.”15

There is still a sizable gap between the
user’s conceptual solution to a problem
and its ultimate realization on a parallel
machine. Only by narrowing that gap can
we increase the reliability and effective¬
ness of scientific parallel programming. ■

Acknowledgments

A portion of this research was conducted at the
Cornell National Supercomputer Facility, a re¬
source of the Center for Theory and Simulation
in Science and Engineering (Cornell Theory
Center). The center receives major funding from
the National Science Foundation and IBM as
well as support fromNew York State and members
of the Corporate Research Institute. Additional
funding was provided through Auburn Univer¬
sity Research Grant-in-Aid 88-217.

References

1. D. Bergmark, History of Parallel Process¬
ing on the CNSF, tech, report, Cornell The¬
ory Center, Cornell University, Ithaca, N. Y.,
to be published in Dec. 1990.

2. G. Bell, “The Future of High Performance
Computers in Science and Engineering,”
Comm. ACM, Vol. 32, No. 9, Sept. 1989, pp.
1,091-1,101.

3. M. Kallstrom and S.S. Thakkar, “Program¬
ming Three Parallel Computers,” IEEE
Software, Vol. 5, No. 1, Jan. 1988, pp. 11-
22.

4. S. Ranka, Y. Won, and S. Sahni, “Program¬
ming a Hypercube Multicomputer,” IEEE
Software, Vol. 5, No. 5, Sept. 1988, pp.
69-77.

5. R.G. Babb II, ed., Programming Parallel
Processors, Addison-Wesley, Reading,
Mass., 1988.

6. N. Wirth, “On the Design of Programming
Languages,” Proc. IFIP Congress 74, North-
Holland, New York, 1974, p. 387.

7. N. Carriero and D. Gelernter, “Linda in
Context,” Comm. ACM, Vol. 32, No. 4, Apr.
1989, pp. 444-458.

8. A. Karp, “Programming for Parallelism,”
Computer, Vol. 20, No. 5, May 1987, pp.
43-57.

9. J. R. McGraw and T.S. Axelrod, “Exploit¬
ing Multiprocessors: Issues and Options,”
IEEE Software, Vol. 5, No. 5, Sept. 1988,
pp. 7-25.

10. A.H. Karp and R.G. Babb II, “A Compari¬
son of 12 Parallel Fortran Dialects,” IEEE
Software, Vol. 5, No. 5, Sept. 1988, pp.
52-66.

11. J.J. Hack, “On the Promise of General-Pur¬
pose Parallel Computing,” Parallel Com¬
puting, Vol. 10, No. 3, 1989, p. 273.

12. C.E. McDowell and D.P. Helmbold, “De¬
bugging Concurrent Programs,” ACM

Computing Surveys, Vol. 21, No. 4, Dec.
1989, pp. 593-622.

13. P. Hudak, “Exploring Parafunctional Pro¬
gramming: Separating the What from the
How,” IEEE Software, Vol. 5, No. 1, Jan.
1988, p. 58.

14. S. Utter and C.M. Pancake, “Advances in
Parallel Debuggers: New Approaches to
Visualization,” Advances in Parallel and
Distributed Computing, to appear in the in¬
augural issue, Jan. 1991.

15. F.R. Bailey, “Toward an Improved Super¬
computing Environment,” Supercomputing
Review, Vol. 1, No. 1, June 1988, p. 18.

m
Cherri M. Pancake is an assistant professor of
computer science and engineering at Auburn
University and a visiting scientist at the Center
for Theory and Simulation in Science and Engi¬
neering, Cornell University. Her research fo¬
cuses on parallel programming tools for perfor¬
mance visualization, parallel debugging, and
interactive parallelization.

Pancake received a BS degree in design and
environmental analysis from Cornell University
and a PhD degree in computer science and engi¬
neering from Auburn University. She is a member
of the IEEE, IEEE Computer Society, Phi Kappa
Phi, Upsilon Pi Epsilon, Phi Beta Delta, and a
chapter officer of ACM.

Donna Bergmark is a senior manager at the
National Supercomputer Facility at Cornell
University. Her research interests are in the
areas of parallel processing and scientific com¬
puting, with emphasis on compilers for parallel
processors.

Bergmark received an MS degree in computer
science from Cornell University. She has been a
member of the ACM since 1969.

Readers may contact Pancake at Auburn Uni¬
versity, Department of Computer Science and
Engineering, Auburn, AL 36849.

December 1990 23

>EDAC^r
★* -k*

The European Design
Automation Conference

Amsterdam, The Netherlands,
25-28 February 1991

EDAC-91 will be held in Amsterdam. The Pro¬
gramme Committee accepted 101 verbal
presentations organized in three parallel sessions.
Two poster sessions are planned as well.

The scope covers all areas of the design process,
from concept to manufacture, and includes CAD
and DA tools for analog, digital, VLSI, microwave
and high-speed electronics.

In addition, three panel sessions, a number of
fringe meetings, a day of tutorials and vendor pres¬
ence are organized.

EDAC Conferences are run by EDAC, a non-profit
association, in cooperation with CAVE (CEC), ES¬
PRIT Basic Research Action (CEC DG 13), IBM
Nederland N.V., IEEE Computer Society DATC, IFIP
Working Group 10.2, IFIP Working Group 10.5
(pending), PTT Research Nederland, and SCME
(Stichting Centra voor Microelektronica).

For information, contact:

EDAC-91 Secretariat
CEP Consultants Ltd.
26-28 Albany Street
Edinburgh EH1 3QH
Scotland
Tel.: +44 31 557 2478
Fax: +44 31 557 5749

General Chair: Jochen JESS
Programme Chair: Hugo de MAN
Past Chair: Gordon ADSHEAD

IEEE COMPUTER SOCIETY

Compiling Scientific Code
Using Partial Evaluation

Andrew Berlin, Massachusetts Institute of Technology

Daniel Weise, Stanford University

Scientists are faced with a dilemma:
They can write abstract programs
that express their understanding of

a problem but do not execute efficiently, or
they can write programs that execute effi¬
ciently but are difficult to write and under¬
stand. Partial evaluation can solve this
problem by providing the missing link be¬

tween the code presented to the compiler
and the computation envisioned by the
programmer.

Partial evaluation is a technique for con¬

verting a high-level program into a low-
level program specialized for an application.
Rather than just considering a program’s
code, the compiler can also consider in¬
formation available at compile time about
the data structures the program will ma¬
nipulate. Scientific applications often
provide enough information at compile time
to allow advance data manipulation, leav¬
ing only the underlying numerical com¬

putation to be performed at runtime. This
approach eliminates nearly all of the pro¬
grammer’s data abstractions and control
abstractions at compile time, producing
high-performance code.

We have implemented a prototype
compiler that uses partial evaluation. Ex¬
periments with our compiler have shown
that for an important class of numerical
programs, partial evaluation can provide

dramatic performance improvements: We

December 1990

Partial evaluation

transforms a high-level

program into a low-

level program that is

specialized for a

particular application.

This exposes the

parallelism inherent in

the underlying

numerical

computation.

have measured speedups over convention¬
ally compiled code that range from seven
times faster to 91 times faster. These ex¬
periments have also shown that by elimi¬
nating inherently sequential data-structure
references and their associated conditional

0018-9162/90/1200-0025S01.00 © 1990 IEEE

branches, partial evaluation exposes the
low-level parallelism inherent in a compu¬
tation. By coupling partial evaluation with
parallel scheduling techniques, this paral¬
lelism can be exploited on heavily pipelined
or parallel architectures. We have demon¬
strated this approach by applying a parallel
scheduler to a partially evaluated program
that simulates the motion of a nine-body
solar system.

Abstraction and high-
level programs

High-level languages such as Lisp are
very powerful in that they allow computa¬
tions to be expressed in terms of abstract
numerical methods and techniques, using
abstractions to mirror the way a person
thinks about a problem. This is in contrast
to the programming methodology associated
with mid-level languages such as Fortran,
in which programmers apply the numerical
techniques themselves to derive the nu¬
merical computation required for a partic¬
ular problem, and then use the programming
language only to express the results of their
efforts.1

Programs can be classified according to
their versatility and ease of construction.
At the lowest level are programs that can
be applied to only one problem, such as the

25

(define (make-integrator F time-step) ;;;make-integrator takes as arguments
;;; the function to be integrated, F,
;;; and the time-step.

(define (produce-next-state current-state)
(define kO (scale-system time-step (F current-state)))
(define kl (scale-system time-step

(F (add-systems current-state (scale-system 1/2 kO)))))
(define k2 (scale-system h

(F (add-systems current-state (scale-system 1/2 kl)))))
(define k3 (scale-system h

(F (add-systems current-state (scale-system 1/2 k3)))))
(define new-state

(scale-system 1/6
(add-systems kO

(scale-system 2 kl)
(scale-system 2 k2)

k3»)
new-state) ;;produce-next-state returns new-state

produce-next-state) ;;;make-integrator returns produce-next-state

Figure 1. Fourth-order Runge-Kutta integrator. This high-level program com¬
poses existing functions to literally construct a new procedure that performs an
integration step.

Overview of Scheme

Scheme is in the Lisp family of languages. All objects, whether they are data
structures or continuations, are dynamically created and have indefinite extent. This
means that they can be created at any point. Once created, they are reclaimed by
the storage system only when a program drops all references to them. The primitive
data types in Scheme include numbers, lists, vectors, and procedures.

The different types of Scheme expressions used in this article are as follows:

(define <name> <exp>) <name> is defined to have the value
returned by <exp>.

(define (<name> <f1> ... <fn>) <exp>) This expression defines a procedure
having name <name>, formal param¬
eters <f1> through <fn>, and body
<exp>.

(let <binding-list> <exp>) <binding-list> is a list of name-expres¬
sion pairs. The expressions are evalu¬
ated. The resulting values are bound
to the names, and then <exp> is eval-

(let* <binding-list> <exp>)

(if <pred> <then> <else>)

(<exp1> <exp2>... <exp3>)

This expression is like let, except that
the bindings are processed serially:
Each name-expression pair is evalu¬
ated and bound in turn.
First <pred> is evaluated. If it evalu¬
ates to true, the <then> expression is
evaluated; otherwise the <else> ex¬
pression is evaluated.
When the first element of an expres¬
sion is not a reserved keyword such as
if or define, an expression denotes a
function call. Each expression is evalu¬
ated, and then the result of evaluating
the first expression is applied to the
other values.

Here are some of Scheme’s built-in functions:

+, *, /
vector
vector-ref
vector-length
cons
car, cdr

Perform arithmetic operations.
Creates a one-dimensional array.
Retrieves an element from a one-dimensional array.
Computes the length of a one-dimensional array.
Creates a pair (a tuple of length two).
Retrieve the first and second element of a pair, respectively.

three-body problem, the analysis of a giv¬
en dam under different loads, or the tran¬
sient behavior of a particular circuit for
different inputs. These programs, because
they solve only one problem, are very effi¬
cient. Unfortunately, they are rarely worth
writing by hand, since their usefulness is
limited to one particular problem.

At the middle or conventional level are
programs typically written in C or Fortran
that solve a class of problems, such as
programs for solving the n-body problem,
analyzing dams, or simulating circuits. They
are more versatile than the lowest class, but
less efficient.

At the highest level are programs con¬
structed using such advanced abstractions
as higher order procedures, automatic

storage mechanisms, and object-oriented
methods. These programs, usually written
in Lisp or Smalltalk, embed representation
and control choices in the data objects
being manipulated. They are the easiest to
construct and the most versatile, because
they can be adapted and reused more readi¬
ly than conventional programs. But they
are the least efficient because of the com¬
putational cost imposed by the abstraction
mechanisms.

As an example of a high-level program,
consider the problem of numerical inte¬
gration of an unknown function F that
computes the rate at which a system
changes. When given a function F, the
program in Figure 1 dynamically creates
a new procedure that performs the inte¬
gration. (See sidebar at left for an over¬
view of Scheme, the language used in this
article.) Notice that this program is totally
independent of the function being inte¬
grated, the data structures used to represent
the system state, and the storage-allocation
strategy. The procedure make-integrator
takes as input the function to be in¬
tegrated and the integration time step. It
then creates and returns a new procedure.
When run, this procedure takes as input
the current system state and then per¬
forms an integration step to produce the
system state corresponding to one time
step later.

This style of programming is quite flex¬
ible. The code for the integrator can be
used in many different applications, mak¬
ing feasible a very general library of nu¬
merical techniques that operate indepen¬
dently of data representations and
storage-maintenance strategies. Roylance1
and Halfant and Sussman2 give more de¬
tailed and powerful examples of abstraction
in numerical computation.

The same flexibility that makes high-

COMPUTER

level languages expressive also reduces their
efficiency. High-level programs are ineffi¬
cient because maintaining abstraction
mechanisms — dynamic storage alloca¬
tion, object-method dispatching, and high¬
er order procedures — requires computa¬
tion. Also, because of its general nature, an
individual procedure does not provide
enough information for the compiler to
predict the computation needed. For exam¬
ple, efficiently compiling the make-inte¬
grator program shown in Figure 1 would be
quite difficult — the compiler does not
know what function will be integrated or
what kind of data structure add-systems
will manipulate.

Conventional compilation can improve
high-level program performance by opti¬
mizing references to variables such as time-
step, passing parameters in registers, plac¬
ing small functions in line, and performing
interprocedural analysis.3 But the perfor¬
mance of compiled programs still falls far
short of that of the low-level numerical
programs an expert programmer would
write: The high-level aspects of the pro¬
gram, such as the procedure calls and data-
structure manipulations, remain in the
compiled program, imposing a performance
penalty. This inefficiency remains because
static analysis considers only the code for a
program — the instructions for manipulat¬
ing the data — not information about the

data itself.

Compiling for a
particular problem

Partial evaluation transforms a general
(high or mid-level) program into a special¬
ized (low-level) program by taking advan¬
tage of information available at compile
time about the data structures the program
will be run on. As Figure 2 shows, given a
high-level program that computes the mo¬
tion of a collection of planets and the fact
that the particular problem being studied

involves exactly nine planets, partial eval¬
uation produces a low-level program that
computes the motion of a nine-planet so¬
lar system for varying initial conditions.

This strategy differs from conventional
compilation techniques. Conventional
compilers seek to optimize the execution
of procedure calls and data-structure ma¬
nipulations, whereas partial evaluation
seeks to eliminate these operations by
performing them in advance, at compile

Partial evaluation is especially effective
on scientific programs because these pro¬

Figure 2. A partial evaluator transforms a general program into one specialized
for a given problem.

grams have a special property: They are
mostly data independent. A program is
data independent when the sequence of
operations it performs does not depend on
the results of the computation. For exam¬
ple, for any given matrix size, matrix-
multiply is data independent: It performs a
fixed set of multiplications, regardless of
the numerical values of the numbers being
multiplied.

Data independence makes it possible
to predict what operations a program will
perform, even before actual numerical
values for its inputs are available. This
allows data manipulation operations to
be performed in advance — at compile
time — leaving only the underlying nu¬
merical computation to be performed at

runtime.
Many data-dependent programs become

data independent once information is
available about the problem that the program
will be used to solve. For example, a gen¬
eral version of matrix-multiply, in which

the size of the matrix is not known at
compile time, would be data dependent,
since the sequence of operations would
vary depending on the size of the matrices
being manipulated. This would prevent the
matrix reference operations from being
performed at compile time, requiring that
the matrix data structures be manipulated
at runtime. However, by considering in¬
formation about the matrices associated
with a given problem, the matrix size can
be determined at compile time, transform¬
ing matrix-multiply into a data-independent
program.

Partial evaluation of
data-independent
programs

There is a very simple way to derive the
underlying numerical computation ex¬
pressed by a data-independent program:
Simply execute the program at compile
time and keep track of what it does. The
key idea is to capture information about
how a program solves a given problem. To
do this, run the program on input data
structures that correspond to the problem
statement. Although the actual numerical
values for some pieces of data will not be
known until runtime, their location within
the data structures will be known at com¬
pile time. Numerical values not yet avail¬
able are represented symbolically using a
data structure known as a placeholder.
Placeholders can also hold additional in¬
formation about a missing number, such as

its type.
For example, consider the input data

structures for a program that integrates the
motion of the solar system. The program
takes as input the current positions and
velocities of the planets, and produces the
positions and velocities corresponding to
one time step later. Figure 3a shows typical
input data at runtime. Because the planets
are in different positions each time the
program is run, numerical values for the
positions are not known at compile time.
Nonetheless, their locations in the data
structures and their types are known, as
expressed in Figure 3b.

December 1990 27

;; Typical data at runtime:
(define mars

(make-planet ‘mars
(/ 1 3093500) ;mass
(3-vector-1.295477589 -.8414136141 -.3513513446) position
(3-vector .3440042605 -.3696674843 -.1789373952))) velocity

Part B

Data structure describing a specific problem:
(define mars

(make-planet ‘mars
(/ 1 3093500) ;The mass of a planet is known at compile time.
(3-vector (MAKE-PLACEHOLDER ‘mars-position-x ‘floating-point) ;p

(MAKE-PLACEHOLDER ‘mars-position-y ‘floating-point)
(MAKE-PLACEHOLDER ‘mars-position-z ‘floating-point))

(3-vector (MAKE-PLACEHOLDER ‘mars-velocity-x ‘floating-point) ;v
(MAKE-PLACEHOLDER ‘mars-velocity-y ‘floating-point)
(MAKE-PLACEHOLDER ‘mars-velocity-z ‘floating-point))))

Figure 3. Data structure for a program that integrates solar system motion:
(a) with typical runtime data, (b) at compile time, with placeholders.

When the program is executed at com¬
pile time, placeholders are treated just like
numbers. For example, they can be aggre¬
gated to form lists, stored in variables or
vectors, and passed as arguments to proce¬
dures. Anything that manipulates a num¬
ber will also manipulate a placeholder.
This allows all data-manipulation opera¬
tions (for example, procedure calls and
data-structure manipulations) to be per¬
formed at compile time.

Our implementation of partial evalua¬
tion produces two values: a list of instruc¬
tions and a result value, which is usually a
placeholder or a data structure containing
placeholders. We built the partial evalua¬
tor on top of a Scheme interpreter by mod¬
ifying the behavior of its lowest level nu¬
merical operations.

During partial evaluation a numerical
operation that encounters numeric argu¬
ments proceeds normally, returning a nu¬
meric result. A numerical operation that
encounters placeholders returns a new
placeholder as output and delays itself un¬
til runtime by appending an instruction to
the list of instructions (see Table 1). The
compiler combines the results of partial
evaluation into a specialized program.
The sidebar at right shows how partial
evaluation works with an inner-product
program.

Data-dependent
programs

Partially evaluating a program via sym¬
bolic execution works well for data-inde-
pendent computations but runs into prob¬
lems when applied to data-dependent
computations. Most programs contain con¬
ditional branches, such as the If statement,
in which a predicate is evaluated to deter¬
mine whether to execute the code associat¬
ed with the consequent or with the alter¬
native. For data-independent computations,
the predicate can always be evaluated at
compile time, since it never depends on the
data being manipulated. However, in data-
dependent computations, the predicate can
depend on values not computed until mntime.

Certain types of data-dependent condi¬
tionals can be partially evaluated by exe¬
cuting (hence generating code for) both the
consequent and the alternative of the condi¬
tional branch at compile time. A condition¬
al branch is then inserted into the compiled
program to choose at runtime which set of
code to execute. This approach is adequate
for simple selection operations, such as
those associated with the absolute value,
Min, and Max functions, but it breaks down
when used on recursive functions. Our
compiler requires the programmer to declare

explicitly (via a program annotation) the

data-dependent conditionals that can be
expanded in this fashion.

There are several ways to get around the
problems associated with data dependen¬
cies. The simplest method, and the one we
take, is to divide the program into data-
independent regions, each of which can be
partially evaluated. Such division limits
the scope of the partial evaluation optimi¬
zations, since the data structures that act as
interfaces between the data-independent
regions of the program cannot be eliminat¬
ed. Fortunately, with scientific codes, a
programmer can make the data-indepen¬
dent regions of a program extremely large
(often several thousand operations) by
considering information about the problem
that a program will solve. The data-depen¬

dent conditionals then occur only at the
ends of these long computations for such
operations as convergence checks and
strategy selection.

The prototype compiler

We have implemented a prototype com¬
piler that uses partial evaluation. This
compiler generates compiled code in a ge¬
neric register-transfer language, in C syn¬
tax, or in Scheme syntax. It provides sup¬
port for invoking partially evaluated
programs as subroutines, in the same man¬
ner as the original Scheme programs from
which they were derived. Since the origi¬
nal Scheme programs use high-level data
structures to receive their inputs and return
their results, the compiler generates a set of
interface routines to convert between the

scalar numerical values manipulated by
the partially evaluated subroutine and the
data structures used in the calling pro¬
gram.

The programs produced by our compiler
have three stages: a prologue, a body, and
an epilogue (see Figure 4). Partially evalu¬
ating a program yields two values: a result
value V, which may be a placeholder or a
data structure containing placeholders, and
a list of instructions to be executed at
runtime, which we call the body. The body
takes as input numerical values for each
input placeholder and performs the re¬
maining numerical calculations that could
not be performed during partial evaluation
because of missing data. The prologue de¬
structures the input data structures present¬
ed to the program at runtime, extracting a
numerical value for each input placehold¬
er. Similarly, the epilogue constructs the
data structures that the program is expect-

28 COMPUTER

ed to return, based on the values of the
result placeholders. When the body is the
body of a loop, the body can loop back
directly to itself, which saves creating

an output data structure and then de¬
structuring it.

Our compiler automatically generates the
prologue’ s destructuring instructions using

Scalar and
Structured inputs

1-^-1 Prologue

Scalars

Optional
feedback
loop for
top-level
loops

Body

Scalars

Epilogue

7
Figure 4. The three stages of programs
produced by the compiler.

Table 1. Partially evaluating the expression (let ((x (+ a b)) (y (+ a c))) (+ xy)). In
this example, a and c are bound to 3 and 7, respectively, while b is bound to
placeholder_102. Partially evaluating the expression requires first partially eval¬
uating (+ a b), then (+ a c), and then (+ xy).

Expression Result Instruction emitted

(+ab) placeholder_243 placeholder_243 := 3 + placeholder 102

(+ a c) 10 None
(+xy) placeholder_244 placeholder_244 := placeholder_243 + 10

An example: Inner product

As an illustration of partial evaluation, consider the vector inner-product program shown here. In this hypothetical application,
each input vector is known to contain three floating-point numbers. Furthermore, the numerical value of the last element of each
vector is known during partial evaluation. This information is encoded in the input data structures at compile time.

(define (inner-product vl v2) ;;take 2 vectors as arguments
(let ((length (vector-length vl)))

(define (inner-product-loop sum counter)
(if (< counter length) "loop through the vector elements

(inner-product-loop (+ sum
(* (vector-ref vl counter)

(vector-ref v2 counter)))
(+ counter 1))

sum))
(inner-product-loop 0 0)))

(define input-vector-1
(vector (make-placeholder ‘floating-point) ;;placeholder #1

(make-placeholder ‘floating-point) "placeholder #2
3.14))

(define input-vector-2
(vector (make-placeholder ‘floating-point) ;;placeholder #3

(make-placeholder ‘floating-point) "placeholder #4
42.0))

(pe vector-inner-product input-vector-1 input-vector-2)

When the inner-product program is run during partial evaluation, execution starts with the call to (vector-length vl), which re¬
turns 3. This is the first saving provided by partial evaluation: The vector-length call is executed and is not included in the com¬
piled program.

Execution continues with the call to inner-product-loop with sum=0 and counter=0. (vector-ref vl 0) returns placeholder #1>,
and (vector-ref v2 0) returns placeholder #2>. Again, these vector references are performed during partial evaluation, and will
not appear in the compiled program.

(* placeholder #1> placeholder #3>) ==> placeholder #5>

The multiply cannot proceed during partial evaluation because numerical values for the placeholders are not yet available. A
multiply instruction is emitted to perform the multiply at runtime, and a new placeholder, placeholder #5>, is created to represent
the result of the multiply operation.

(+ sum placeholder #5>) ==> placeholder #5>

December 1990 29

the placeholders’ locations within the
compile-time input data structures. Simi¬
larly, the compiler automatically creates
the epilogue, using the placeholders’ loca¬
tions within the result value Vproduced by
partial evaluation.

The compiler also targets the body for a
particular machine. Sequential computers
usually require reordering of the computa¬
tion to minimize the number of intermedi¬
ate results created, thereby minimizing
memory accesses. For parallel computers,
scheduling is more complicated, requiring
that the computation be partitioned among
multiple processors.

Figure 5 shows the partially evaluated
inner-product example (presented in the
sidebar below), with the additional pro¬
logue and epilogue sections. For an ex¬
tremely small program like inner-product,

the vector references required to interface
to the high-level Scheme program repre¬
sent a significant cost. However, on larger
examples, such as the circuit simulation
program discussed next, the compilation
process is far more effective. Although
high-level data-structure (vector) manipu¬
lations remain in the prologue and epi¬
logue, these are insignificant compared
with the number of data-structure manipu¬
lations (such as manipulation of matrices)
that are eliminated through partial evalua-

The two routines in Figure 6 constitute
the inner loop of transient analysis for
linear circuits. The function next-state ac¬
cepts a circuit state at time t and a time
increment h, and returns the state at time t
+ h. It first calculates the node voltages by
creating and solving a sparse matrix. Then

the branch currents are computed using the
node voltages. The function create-inte-
gration-matrix uses object-oriented tech¬
niques to add the contributions of each
component into the matrix: It retrieves the
function for computing an element’s con¬
tributions from the element itself and then
invokes the function. We show these frag¬
ments to emphasize the amount of work the
simulator must perform to compute the
next state.

For the circuit shown in Figure 7, Figure
8 shows how the specialized next-state is
compiled. The specialized function maps a
state at time t into a state at time t + 0.1.
Optimizations that were applied include
dead-code elimination, constant folding, sign
targeting, and arithmetic simplification. For
example, constant folding produced such
constants as .02 and 49.6277915633.

Since sum=0, this operation can proceed at compile time, even though the value represented by placeholder #5> is not yet
available.

The inner-product-loop is then called recursively, with sum = placeholder #5> and counter = 1. The second iteration through
the loop creates placeholder #6> and placeholder #7> to represent the results of the multiply and the add operations.

During the third iteration through the inner-product-loop, numerical values for the vector elements are available, allowing the
multiply to proceed at compile time. The addition is delayed until runtime, creating placeholder #8> to represent the result of the
overall computation. The program produced by the partial evaluator contains no data structures, procedure calls, or conditional
tests; there are only numerical operations.

Below is the result of partially evaluating inner-product. The multiplication of 3.14 times 42.0 to produce 131.88 took place dur¬
ing partial evaluation. All vestiges of the original vectors and the inner-product-loop control structure — and portions of the compu¬
tation — were eliminated by performing them in advance, during partial evaluation.

Inputs: Placeholder, Placeholder, Placeholder, Placeholder

;;from the first iteration of inner-product-loop:
Placeholder = (* Placeholder Placeholder) ;;vector elements #0

;;from the second iteration of inner-product-loop:
Placeholder = (* Placeholder Placeholder);;vector elements #1
Placeholder = (+ Placeholder Placeholder) -compute sum

;;from the third iteration of inner-product-loop:
Placeholder = (+ Placeholder 131.88)

Result:
Placeholder

Traditional compiler optimizations further improve the performance of the partially evaluated program. Algebraic simplification,
dead-code elimination, and common subexpression elimination optimize the underlying numerical computation, without interfer¬
ence from compound data structures or abstraction mechanisms. Opportunities for these optimizations often arise when high-level
data-structure operations are combined, as in this version of the subtract-vectors operation, where symbolic manipulation of the
low-level computation allows the addition and scaling operations to be combined in a subtraction.

(define (subtract-vectors a b)
(add-vectors a

(scale-vector-1 b)))

Such optimizations are often not noticed by the programmer when the optimizations do not apply uniformly to all elements of a
data structure, or when the operations being combined are in physically separate portions of the program.

30 COMPUTER

Compiled INNER-PRODUCT, Arguments: vl, v2

"PROLOGUE:
Placeholder^ = (vector-ref vl 0)
Placeholder_2 = (vector-ref v 1 1)
Placeholder_3 = (vector-ref v2 0)
Placeholder_4 = (vector-ref v2 1)

"BODY:
"from the first iteration of inner-product-loop:
Placeholder_5 = (* Placeholder^ Placeholder_3)
"vector elements #0

"from the second iteration of inner-product-loop:
Placeholder_6 = (* Placeholder_2 Placeholder_4)

"vector elements #1
Placeholder_7 = (+ Placeholder_5 Placeholder_6) ;;sum

;;from the third iteration of inner-product-loop:
Placeholder_8 = (+ Placeholder_7 131.88)

"EPILOGUE:
Placeholder_8

Figure 5. Compiled inner-product program with the addi¬
tional prologue and epilogue instructions required to inter¬

face to high-level Scheme programs.

(define (next-state circuit state h)
(let* ((matrix (create-integration-matrix circuit state h))

(new-voltages (solve-matrix
(trim-ground matrix)))

(new-currents (compute-b-currents circuit
new-voltages state h)))

(make-circuit-state new-voltages new-currents
(+ h (state-time state)))))

(define (create-integration-matrix circuit state h)
(let ((voltages (state-voltages state))

(currents (state-currents state)))
(let loop ((components (circuit-components circuit))

(matrix (create-nxn+1-matrix
(circuit-number-of-nodes circuit))))

(if (null? components)
matrix
(loop (cdr components)

((component-integration-method
(car components))
matrix voltages currents h))))))

Figure 6. Scheme code fragments for transient analysis.

(compile next-state
rlc-circuit
(make-circuit-state (voltages (make-placeholder ‘floating-point))

(currents (make-placeholder ‘floating-point)
(make-placeholder ‘floating-point)
(make-placeholder ‘ floating-point))

(make-placeholder ‘floating-point))

0.1)

Compiled NEXT-STATE, Arguments: state

"PROLOGUE:
Placeholder_l = (vector-ref (vector-ref state 0) 0)
temp = (vector-ref state 1)
Placeholder_2 = (vector-ref temp 1)
Placeholder_3 = (vector-ref temp 2)
Placeholder^ = (vector-ref state 2)

;;BODY:
Placeholder_6 = (* Placeholder^ .00005)
Placeholder_8 = (+ Placeholder_6 Placeholder_2)
Placeholder_9 = (* Placeholder^ .02)
Placeholder_10 = (+ Placeholder_9 Placeholder_3)
Placeholder 12 = (- Placeholder 10 Placeholder_8)

Placeholder^ = (* Placeholder^ 49.6277915633)
Placeholder_15 = (- Placeholder_14 Placeholder^
Placeholder 17 = (* Placeholder^ .02)
Placeholder 18 = (- Placeholder 17 Placeholder_3)
Placeholder^ = (+ Placeholder 14 Placeholder 1)
Placeholder_21 = (* Placeholder 19 .00005)
Placeholder_22 = (+ Placeholder_21 Placeholder_2)
Placeholder_23 = (* Placeholder^ 4.96277915633e-3)
Placeholder_24 = (+ . 1 Placeholder_4)

"EPILOGUE:
(VECTOR (VECTOR Placeholder 14)

(VECTOR Placeholder_23 Placeholder_22 Placeholder 18)

Placeholder_24)

1000H

Figure 7. Circuit for Figure 8.

Figure 8. Compiling next-state for Fig¬
ure 7 circuit and a fixed time step. The
compiler accepts a function and the
partial values that describe the func¬

tion’s inputs.

Table 2. Timings of the sample applications (in seconds) and speedups with par¬
tial evaluation (in percent). For the ra-body problem, both the time step and the

masses of the planets were chosen at compile time.

Problem
description

Compiled
C Scheme

Specialized
program

Speedup
over compiled

6-body system 0.76 0.020 38

9-body system 1.50 0.038 39

Translate P = 3 0.022 0.002 11

Translate P = 6 0.28 0.011 25

Duffing’s equation 4.04 0.53 7.6

Circuit simulation 2.37 0.026 91

Limitations of partial
evaluation

Partial evaluation works best when the
structure of the system stays constant and
only the state changes. Simulations of cir¬
cuits, dams, and solar systems fall into this
class. It does not work well when the struc¬
ture changes or the computations are ex¬
tremely data dependent. For example, par¬
tial evaluation does not work for sorting
arrays or inserting elements into balanced
trees. Similarly, it is difficult to use with
linear programming, because the choice of
pivot is data dependent.

A program must be partially evaluated
whenever the structure of the problem
changes. This is not a drawback with sim¬
ulations that run for a long time or with
applications such as circuit simulation,

where multiple sets of input data and initial
conditions need to be run before the system
structure is changed. However, with small¬
er problems, where specialized code is not
traversed hundreds of times, the time spent
in the partial evaluator may exceed the
time saved by the optimizations.

The size of the compiled program can
become a problem because loops are ex¬
panded at partial evaluation time. Very
large data sets and nonlinear algorithms
result in very large specialized programs.
When the code becomes too long, selected
data structures and loops should be left
intact. For example, the inner loops that
deal with manipulations of a single seg¬
ment of a large data structure can be par¬
tially evaluated, while the outer loop that
traverses the data structure can be left in¬
tact. Our compiler leaves to the program¬
mer the choice of which loops to partially

evaluate, although the decision could be
automated by the proper heuristics.

Requiring the programmer to decide
which regions of a data-dependent pro¬
gram to partially evaluate is a limitation
of our technology. Much of the partial
evaluation community is investigating
automatic methods that do not require
programmer intervention to handle data-

dependent programs. Their technologies
and methods for full automation have
achieved many successes and are getting
more powerful, but are not yet able to
handle the types of programs and pro¬
gramming styles that our partial evaluator
can handle.

Experiments

We have applied partial evaluation to
several numerically oriented scientific
problems. These problems were chosen
from active research at MIT and Stanford,
providing a “real world” demonstration of
partial evaluation’s applicability to scien¬
tific computation. Scheme programs im¬
plementing the n-body algorithm, the so¬
lution to Duffing’s equation, the translation
operator for the multipole method, and an
electrical circuit simulator were taken di¬
rectly from code in use by researchers.

The figures presented here measure per¬
formance using C syntax programs pro¬
duced by the compiler. The application
programs were not modified for these ex¬
periments, except for the Duffing’s equa¬
tion application, in which a programmer’s
declaration was added, indicating that the
main integration loop should be left intact.

The experimental method was as fol¬

lows:

(1) Obtain working code from re¬

searchers.

(2) Select the parts of the code to be
partially evaluated.

(3) Compile the selected code with our
compiler and produce a C program as output.

(4) Compile the C program with a con¬

ventional compiler and link it into the MIT-
Scheme Lisp system, so that it can be
invoked as a subroutine from Lisp.

(5) Compile the program using a con¬
ventional Lisp compiler. (Specifically, MIT
C Scheme Release 7 with Liar compiler
Version 4.38, running on a Hewlett-Pack¬
ard 9000, Series 350, with 16 Mbytes of
memory. The timings presented do not
include garbage collection time.)

(6) Compare the execution times of the
conventionally compiled program with
those of the partially evaluated program.

Applications. We applied this method
to four applications: the n-body problem,
the multipole method translation operator.
Duffing’s equation, and an electrical cir¬
cuit simulation.

The n-body problem. The n-body prob¬
lem involves computing the trajectories of
a collection of n particles that exert forces
on each other. This very important prob¬
lem arises in particle physics, astronomy,
and space travel. In astronomy, the six-
body and nine-body problems are of par¬
ticular interest. The six-body problem in¬
cludes only the outer planets and the sun
for investigations of the long-term stability
of the solar system. The nine-body prob¬
lem includes all the planets except Mercury,
which is excluded because its high eccen¬
tricity necessitates an extremely small in¬
tegration-step size, making long-term inte¬
grations impractical.

An n-body program written in Scheme
by Gerry Sussman was used as a starting
point for the compilation process. This
program makes liberal use of abstraction
mechanisms, including higher order pro¬
cedures, lists, vectors, table lookups, and
set operations.

To simulate future particle motion, the
program integrates the forces that the par¬
ticles exert on each other over time. The
integration-step routine takes an initial state
of the planets and produces a new state that
corresponds to one time step later. This
routine is then repeated, thereby advancing
the system in time. We used our compiler
to create a specialized version of the inte¬

gration-step procedure.
The state of the system includes the

planets’ positions, velocities, and masses.
The data description presented to the com¬
piler left the positions and velocities un-

32 COMPUTER

known, but specified the masses, which are
virtually time independent. Many compu¬
tations involving the planets’ masses were
performed at compile time. For example,
since Pluto is very small relative to the
other planets, its mass was approximated
as zero. The partial evaluator propagated
this information throughout the program,

eliminating numerous computations.
For a given n, the n-body problem is

entirely data independent. Measurements
were taken for the six-body problem and
for the nine-body problem, using the Runge-
Kutta integration method. We found that
when the masses of the planets were pro¬
vided at compile time, the partially evaluated
programs ran 11 percent faster than if the
masses of the planets were not known until

runtime.

The multipole method translation oper¬
ator. The multipole method approximates
force interactions involving large numbers
of particles, as in fluid-flow simulations.
The method divides space into a quadtree¬
like tree of cubes. Part of the force approx¬
imation propagates information up the tree
from a cube to its parent. A significant
portion of the computation time is spent
evaluating translation operators. The
translation operator is an entirely data-

independent computation.
We took a Scheme implementation of

this operation from a program written pri¬
marily for people to understand. As such,
the program does not take advantage of
special cases in the multipole expansions,
such as terms that are known to have expo¬
nents of 0 or 1. Experiments showed that
roughly half the numerical operations were
eliminated because of algebraic simplifi¬
cation involving these constants. The pro¬
gram was compiled for two different val¬
ues of a parameter P, which denotes the
number of terms in the multipole expan¬
sions. (P = 3 is commonly used for bench¬
mark purposes. For large P — above 10 —
the growth in code size makes compilation
of the entire translation operator impracti¬
cal. For such large P, either a smaller seg¬
ment could be compiled or some loops

could be left intact.)

Duffing’s equation. To demonstrate the

compilation of programs containing sim¬
ple loops, an adaptive Runge-Kutta inte¬
grator was used to integrate a one-period
evolution of the variations and derivatives
of Duffing’s equation. This program was
taken from work on automatically charac¬
terizing the state space of Duffing’s equa¬
tion.4 It uses an adaptive integration strat¬

egy coupled with a control loop that iter¬
ates for one period. A declaration was
added to the program, telling the partial
evaluator not to try to unroll the control

loop.

Electrical circuit simulation. Partial
evaluation was applied to an electrical cir¬
cuit simulator implemented in Scheme. This
simulator was written abstractly to reflect
as much of the underlying mathematics of
simulation as possible. Abstract structure
allows experimentation with different sim¬
ulation algorithms and strategies. We used
partial evaluation to specialize this simula¬

tor for the circuit of interest, providing a
dramatic performance improvement. The
experiment we performed simulated a 120-
component linear circuit; the integration
time step was not specified until runtime.

Performance measurements. Our
compiler generated specialized routines in

C for each of the applications described
above. Table 2 presents timings and speed¬
up factors for each application, compiled
by the Liar Scheme compiler (“compiled C
Scheme”), and compiled by our partial-
evaluation-based compiler (“specialized
program”). None of these timings includes
the time required to compile the special¬
ized C routines themselves. The specialized
routines are significantly faster than the
Scheme programs they were generated from.
For abstract programs, specialization pro¬
vides dramatic performance improvements.

The performance of our compiler itself
has not been investigated. For our experi¬
ments, partial evaluation time ranged from
tens of seconds to several minutes (all
programs and timings were run on the same
hardware platform). A problem in per¬
forming measurement experiments was
compiling the specialized programs with a

C compiler. The huge basic blocks that
appear in specialized programs break many
C-code optimizers: The optimizers do not
seem to terminate. This problem can be

solved by generating machine code direct¬
ly, a task we have not yet pursued.

Mapping programs
onto parallel
architectures

Partial evaluation exposes tremendous
amounts of instruction-level parallelism.

This is very important, as the effective use
of superscalar and superpipelined proces¬
sors often requires program transforma¬
tions to expose the parallelism needed to

keep them completely busy.5 The first au¬
thor implemented several analysis and
scheduling programs to study and harness
this parallelism. For a hypothetical archi¬
tecture consisting of multiple arithmetic
logic units and a communication network,
experiments were run to measure the ef¬
fects of pipeline and communication la¬
tencies on performance. At least for the
nine-body problem, large numbers of
arithmetic logic units could be kept contin¬
uously busy, thereby efficiently harness¬
ing the available parallelism. (Specifical¬
ly, the problem was 12th-order Stormer
integration of the nine-body gravitational
attraction problem, with masses chosen at
compile time and time step chosen at run-

The first step in these experiments was
to construct a directed acyclic graph from
the body of the partially evaluated pro¬
gram. Each node in the graph represents an
operation, and there is a directed edge from
the producer of a value to each of the
consumers of the value. (Actually, the graph
was created incrementally by the partial
evaluator as it constructed the body.) We

call the directed acyclic graph a numerical

dataflow graph.
Figure 9 presents a parallelism profile

for Stormer integration of the nine-body
problem. This profile shows the maxi¬
mum amount of parallel execution that
would occur if a computer had an infinite
number of processors communicating in¬
stantaneously. The profile was produced
by performing a breadth-first search of
the numerical dataflow graph, scheduling
each operation as soon as it could be

performed.
This profile differs from the parallelism

profiles common in the literature in that it
accounts for the different latencies of the
different arithmetic operations. (The laten¬
cies were based on Bipolar Integrated
Technologies’ B3110A/B3120A floating¬
point chips.) We discovered that for dou¬
ble-precision computations, latency dif¬
ferences are large enough to be of
fundamental importance. For our realistic
latency measures, the critical path length
differs by a factor of 2 when we account for

latencies.

Architectural constraints that increase
latency. Pipelining and communication
delays interfere with efficient execution of
numerical dataflow graphs, increasing the

effective time required to complete an op¬
eration. In pipelining, several instructions
are executed simultaneously within a pro¬
cessor. Pipeline latency is the number of

December 1990 33

cycles required for the result of an opera¬
tion to become available as the source of
another operation. Communication laten¬

cy is the number of cycles required to
transfer a result between processors.

Pipelining. Technological consider¬
ations often result in pipelined architectures
that overlap the execution of successive
instructions within a single processor. The
parallelism profile in Figure 9 is based on
the assumption that the result of an in¬
struction that finishes executing in one

cycle can be used immediately in the fol¬
lowing cycle. Unfortunately, this assump¬
tion is not valid with pipelining. Figure 10
shows that in a three-stage pipeline the

result of an instruction initiated in cycle 1

will not be available to the instruction
initiated during cycle 2. Thus, even with an
infinite number of processors and no com¬
munication delays, a machine composed of
three-stage pipelined processors will require
about twice as many cycles to execute a
computation as a nonpipelined machine
would.

Since some instructions have more la¬
tency than others, the processors are some¬
times busy more than half the time. This
would make “twice as many cycles” seem
too pessimistic. On the other hand, the
estimate does not consider the additional
delay imposed by unloading a result from
a processor before it can be loaded into

another processor. This creates a one-cycle
cost for moving data between processors,
even when there are no communication
delays, effectively increasing the minimum
number of cycles required to complete the
computation. Overall, these two effects
cancel each other out.

Despite this increase in the number of
cycles required to execute a program,
pipelining is advantageous because it re¬
duces the length of each cycle. In addition,
parallelism available in the problem can be
used to hide the latency imposed by pipe¬
lining. Rather than schedule all available
parallel operations into the same cycle on
many processors, it is possible to use fewer
processors more effectively, scheduling some
of the operations during the next cycle (paral¬
lelism in time) to keep the pipeline busy.

Communication latency. Processors do
not communicate instantaneously. The time
required to move a result from one proces¬
sor to another limits how soon the result
can be used by a subsequent instruction.
This has an effect similar to increasing the
length of the pipeline, as Figure 11 illus¬
trates. Just as parallelism can be used to
hide the latency in pipelines, parallelism can

also hide the latency imposed by communica¬
tion delays.

A scheduler for parallel programs.
Our scheduler searches for a schedule that
will keep each processor as busy as possi¬
ble. It uses heuristics that spread the avail¬

able parallelism over the processors to hide
the latencies imposed by pipeline and
communication delays. These heuristics
schedule the critical path first and sched¬
ule noncritical operations around the crit¬
ical path. For the nine-body problem, the
system was able to use 40 pipelined pro¬
cessors with 90 percent efficiency.

The scheduler operates on the numerical
dataflow graph. It first computes the laten¬
cy of every possible path through the graph.
These paths are then sorted, allowing the
critical path of the computation to be iden¬
tified. When the operations are scheduled,
priority is given to operations that lie in the
critical path of the computation. If all
available processors are not needed to work
on the most critical path, computations
from less critical paths are scheduled.

Depending on the machine model, cre¬
ating an optimal schedule that completes
in the shortest time possible can be an
NP-complete problem. Rather than try to
find an optimal solution to the problem,
heuristics are used to select a solution
that keeps the processors extremely busy.

Figure 9. Parallelism profile of the nine-body problem. This graph represents the
total parallelism available in the problem, accounting for the latency of numeri¬
cal operations.

| Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5 |

Instruction 1 | Load | Execute | Unload ~|

Instruction 2 | Load | ExecutjL | Unload |

Instruction 3 (Load | Execute | Unload [

Figure 10. A typical three-stage processor pipeline. During the load stage, the
data is loaded into the arithmetic logic unit. The result is computed during the
execute stage, and unloaded from the ALU during the unload stage. The results
produced by instruction 1 are not available to instruction 2, but are available to
instruction 3.

34 COMPUTER

| Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5 | Cycle 6

Instruction 1 | Load | Execute | Unload | Comm-11 Comm-21—^

Instruction 2 | Load | ExecujL | Unload | Comm-11 Com^i-2

| Cycle 7 Cycle 8 | Cycle 9 | Cycle 10|

Instruction 3 | Load | Execute | Unload | ComnAl | Comm-2 |

Instruction 4 | Load | Execute | Unload j | Comm-1 | Comm-2 |

Instruction 5 | Load ExeciW ! | Unload | Comm-1 | Comm-2 |

Instruction 6 | Load | Execute | Unload | Comm-1 | Comm-2 |

Figure 11. A three-stage processor pipeline with a communication latency of two cycles. As indicated by the arrows, a re¬
sult produced by instruction 1 can be used within the same processor by instruction 3, but cannot be used by other proces¬

sors until instruction 6.

Figure 12. The result of scheduling the nine-body problem onto 40 pipelined pro¬
cessors with a communication latency of one cycle. A total of 85 cycles was re¬
quired to complete the computation. On average, 36.4 of the 40 processors were

used during each cycle.

To give a flavor for the algorithm and
heuristics, here is a brief overview:

• A subset O of the operations whose
operands have been computed is chosen,
corresponding to the number of processors
available. This selection is based on the

latency priorities described above.
• The operations in O whose operands

have been available long enough to have
been transmitted to other processors are
given lower scheduling priority than those
operations whose operands have been pro¬
duced recently. This rule gives priority to
nonrelocatable computations.

• A computation whose operands were
produced by a processor will be scheduled
in that same processor wherever possible.

• The number of connections between
processors is kept to a minimum. When the
operands of a computation must be trans¬
mitted from one processor to another, the
scheduler attempts to choose a pair of pro¬
cessors that have communicated with each

other before.
• Several heuristics break ties, using such

information as the memory usage within
each processor, the number of computa¬
tions waiting for a particular result, and the
frequency with which processors use the
communication network.

These heuristics are quite effective.6 On
the nine-body problem, the scheduled code
provided speedups approaching the theo¬

retical limit.

Performance measurements. Figure 12
shows the results of applying the scheduler

to the nine-body problem, using a 40-pro¬
cessor system with a three-stage processor
pipeline and a communication latency of
one cycle. The parallelism available in
the problem was distributed over the life
of the computation, effectively using all
40 processors in most of the cycles.
Overall, the performance improved 36-
fold over that of a single pipelined pro¬
cessor, indicating that the processors were
used with approximately 90 percent effi¬

ciency.
The scheduler’s ability to use the avail¬

able processors effectively varies with both
the number of processors in the system and

the communication latency. As Figure 13
shows, for the nine-body problem we found
that communication latency directly af¬
fects the maximum speedup provided by

the scheduler.

Relation to other parallelization re¬
search. Many compilers for high-perfor¬
mance architectures use program transfor¬
mations to exploit low-level parallelism.
For instance, compilers for vector ma¬
chines unroll loops to help fill vector
registers. Similarly, compilers for very-
large-instruction-word architectures7 use
trace scheduling to guess which way a

December 1990 35

Figure 13. Effects of communication latency on speedup. The graph shows the
speedup factors over a single pipelined processor. The analysis is for a system
composed of processors using a three-stage pipeline.

branch will go, allowing computations
beyond the branch to occur in parallel
with those that precede the branch. These
techniques are limited by their preserva¬
tion of the original program’s user data
structures: If the original program repre¬
sented an object as a vector of vectors, the
compiled program will do so as well.

Preserving data structures imposes syn¬
chronization requirements that reduce the
instruction-level parallelism available to
the compiler.

Partial evaluation eliminates data struc¬
tures and many conditionals to produce
numerical dataflow graphs, allowing inter¬
mediate results to be used in portions of a
program that would not otherwise have
been reached, even through trace schedul¬
ing. This technique is orthogonal to the
trace-scheduling approach: Partial evalua¬
tion eliminates conditional tests related to
data structures, producing large data-inde-
pendent regions (also known as basic
blocks) that can be executed in parallel,
while trace scheduling optimizes across
basic block boundaries.

Partial evaluation is an important
technique that provides significant
performance improvements for an

important class of numerical programs.
Implementing partial evaluation using the
placeholder technique is adequate for data-
independent computations, but it needs to
be made more general, particularly in the
area of automatically deciding which loops
and data structures should be specialized
and which should be left for runtime eval¬
uation.

The most exciting result of this work is

the ability of partial evaluation to make
abstractly specified programs execute effi¬
ciently. One of the most frustrating tasks in
scientific programming is transforming an
application to a form that makes use of
existing library routines. Partial evalua¬
tion will allow library routines to be spe¬
cialized to match the program, rather than
requiring the programmer to transform the
program to match the library routine. ■

Acknowledgments

This article describes research done at the
Artificial Intelligence Laboratory of the Massa¬
chusetts Institute of Technology and at the Com¬
puter Systems Laboratory of Stanford Universi¬
ty. The MIT AI Laboratory research is supported
in part by the Advanced Research Projects Agency
of the Defense Department under ONR contract
N00014-86-K-0180. The Computer Systems
Laboratory research is supported in part by con¬
tract N00014-87-K-0828. Daniel Weise is also
supported by NSF contract MIP-8902764.

We would like to thank Feng Zhao, Harold
Abelson, Gerry Sussman, Erik Ruf, Scott
Seligman, Thomas Simon, and Olivier Danvy
for helping us to build the systems and coherent¬
ly report the results and major ideas. We also
thank the anonymous referees who supplied us
with many useful and constructive comments.

References

1. G. Roylance, “Expressing Mathematical
Subroutines Constructively,” Proc. ACM
Conf. Lisp and Functional Programming,
ACM, New York, 1988, pp. 8-13.

2. M. Halfant and G.J. Sussman, “Abstraction
in Numerical Methods,” Proc. ACM Conf.
Lisp and Functional Programming, ACM,
New York, 1988, pp. 1-7.

3. A. Aho, R. Sethi, and J. Ullman, Compilers:
Principles, Techniques, and Tools, Addison-
Wesley, Reading, Mass., 1985.

4. H. Abelson, “A Step Towards the Automat¬
ic Analysis of Dynamical Systems,” Memo
1174, Artificial Intelligence Laboratory,
MIT, Cambridge, Mass., 1989.

5. N. Jouppi and D. Wall, “Available Instruc¬
tion-Level Parallelism for Superscalar and
Superpipelined Machines,” Proc. Third In¬
ternal Conf. Architectural Support for Pro¬
gramming Languages and Operating Sys¬
tems, 1989, pp. 272-282.

6. A. Berlin, A Compilation Strategy for Nu¬
merical Programs Based on Partial Evalu¬
ation, masters thesis, MIT; also Tech. Re¬
port TR-1144, Artificial Intelligence
Laboratory, MIT, Cambridge, Mass., 1989.

7. J.R. Ellis, Bulldog: A Compiler for VLIW
Architectures, MIT Press, Cambridge, Mass.,
1986.

Further reading

Partial evaluation has many uses and is be¬
coming an active research topic. The first partial
evaluators were written by the artificial intelli¬
gence community for Lisp. Their motivation
was much like ours: to remove the costs of
abstraction automatically. Kahn has written an
excellent paper on the value and application of
partial evaluation to artificial intelligence re-

Researchers at the University of Copenhagen
have investigated partial evaluation to construct
compilers automatically from denotational de¬
scriptions of programming languages. Jones,
Sestoft, and Sondergaard report some of their
progress.

An excellent partial evaluation source book is
Partial Evaluation and Mixed Computation,
edited by Bjorner, Ershov, and Jones. This book
also contains a comprehensive bibliography of
partial evaluation research.

Chambers and Ungar have used partial evalu¬
ation techniques to efficiently compile Self, an
object-oriented language. They specialize pro¬
grams on the fly, as specialized (they use the
word “custom”) routines are needed. This work
places a heavy emphasis on quickly producing
the specialized procedures.

Bjorner, D., A.P. Ershov, and N.D. Jones, eds.,
Partial Evaluation and Mixed Computation,
North-Holland, Amsterdam, 1988.

Chambers, C., and C. Ungar, “Customization:
Optimizing Compiler Technology for Self, a
Dynamically-Typed Object-Oriented Program¬
ing Language,” Proc. SIGPlan Conf. Program¬
ming Language Design and Implementation,
ACM, New York, 1989, pp. 146-160.

36 COMPUTER

Jones, N.D., P. Sestoft, and H. Sondergaard,
“Mix: A Self-Applicable Partial Evaluator for
Experiments in Compiler Generation,” lnt’l J.
Lisp and Symbolic Computation, Vol. 1, Nos. 3/
4, 1988.

Kahn, K.M. “A Partial Evaluator of Lisp Pro¬
grams Written in Prolog,” First Int'l Logic Pro¬
gramming Conf, Marseilles, France, 1982, pp.
19-25.

Andrew Berlin is a PhD student in electrical
engineering and computer science at MIT. His
research interests are in computer architecture,
parallel compilation, and scientific applications
of computer technology.

Berlin received his BS and MS in electrical
engineering and computer science from MIT in
1985 and 1989.

Daniel Weise is an assistant professor in the
Computer Systems Laboratory at Stanford Uni¬
versity. His research interests include program¬
ming languages, compilers, program transfor¬
mation, and computer-aided design.

Weise received his BS from UCLA in mathe¬
matics and computer science in 1979 and his MS
and PhD in computer science from MIT in 1982
and 1986. He is a member of the IEEE Computer
Society, IEEE, and ACM.

Berlin can be reached at the Artificial Intelli¬
gence Laboratory, MIT, 545 Technology Square,
Cambridge, MA 02139. Weise can be contacted
at the Computer Systems Laboratory, Stanford
University, Stanford, CA 94305.

City/State/Zip: _

Phone:_

What’s so
special about
Frances Gustavson? Dr. Frances Gustavson began her career at

IBM's T.J. Watson Research Center in
1964. Since then, she's held several key

positions in the industry, including first chair of
Pace University's Westchester Information
Systems Department, and has been a consultant
in the industry. Those 26 years of experience give
her a special insight when it comes to teaching.

“When experienced professionals return to the
classroom it’s because they want to further their
career. Pace offers a range of programs that have
been specially created with that person in mind.

“Pace programs have been designed to give
you experience and expertise that go far beyond
your degree: how to think; how to apply what you
know to solve problems; and how to continue
growing professionally once you’ve left the
classroom.

“Our Master of Science degree in Computer
Science is one of the only programs of its kind
offered in the New York/Westchester area. It
provides a broad education in this exciting and
dynamic field with a strong focus on software
engineering and development.

“The Master of Science degree in Information
Systems is another first for Pace. Most schools
offer this kind of coursework only as part of an
MBA program. But this was specially created for
people who want to develop ways to integrate
computers into modem organizations.

“Computers are playing an ever increasing
role in education today. Our Certificate in
Computer Science for Teachers is for educators
who want to keep up with the latest innovations
and want to integrate computers into their
classrooms.”

How to take the first step.
Put Frances Gustavson’s experience to work

for you. Fill out this coupon and mail it today.
Or call 1-800-TRI-PACE Ext. 1001. Do it now.
The experience for a lifetime is waiting for you.

Mail to: Pace University,
Admissions Information Center,
Pace Plaza, NY, NY 10038
Yes, I’m interested in attending an Information Session on:
□ White Plains Graduate Center, 12-3-90
0 Please send me a catalog and application for the

School of Computer Science & Infoimation Systems
am interested in attending:

0 Full-time □ Part-time □ Westchester □ New York

December 1990
THE EXPERIENCE FOR A LIFETIME

Architecture-Independent
Parallel Computation

David B. Skillicorn

Queen’s University at Kingston

Parallel computers have failed to make
a major impact on mainstream
computation, despite the fact that

commercial products have been available
for almost a decade. A substantial perfor¬
mance/price advantage over conventional
supercomputers, and even large uniproces¬
sors, has not been enough to convince us¬
ers to move from a sequential to a parallel
mode of computation.

An examination of the state of the art in
parallel computing suggests an explanation.
Different classes of parallel architectures
require radically different paradigms for
describing and executing computations. In
addition, both practitioners and theoreti¬
cians have specialized along architectural
lines. There is no obvious winner among
these architectures; it is hard to move ap¬
plications from one class to another; and
many potential users are unwilling, on the
present evidence, to make a computer acquisi¬
tion decision with long-term implications.

There is currently no way to develop
software for parallel computers and expect
it to have a long lifetime. Software devel¬
oped for uniprocessors has turned out, rather
surprisingly, to have a very long lifetime
indeed. A great deal of software that was
written more than 20 years ago is still in
use. By contrast, developers of software
for parallel computers do not expect their
software to have a very long life span; they
are often resigned to substantially reworking
their programs with the advent of the next
generation of computers.

Existing parallel languages are almost
all tied to some particular architectural
class. Even when the software environ-

38

Locality-based

computation, the

foundation for an

architecture-independent

programming language

grounded in the

Bird-Meertens

formalism, shows that

architecture-independent

parallel programming

is possible.

ment seems superficially the same (some
variant of C or Fortran, perhaps), the un¬
derlying mechanisms for communication

and synchronization are often substantial¬
ly different. In some cases, software must
be substantially modified to take full ad¬
vantage of, or even to execute on, a larger
configuration of the same kind of multi¬
processor. Such software is not portable in
any serious sense.

Because the paradigms and patterns of
program execution for various parallel ar¬
chitectures differ, programmers today must
approach parallel programming in ways

0018-9162/90/1200-0038$01.00 © 1990 IEEE

that are architecture dependent. The stan¬
dard repertoires of algorithms and program
fragments for each of the various archi¬
tecture classes have very little in common.
Moving from one architecture class to an¬
other very often means learning to design
and program all over again. Thus, pro¬
grammers are no more “portable” than
software.

Software engineering techniques for
developing parallel programs have not yet
been developed. The present generation of
languages requires programmers to be aware
of, and explicitly handle, either the degree
of physical parallelism, or communication,
or both. Programmers must be aware of the
kind of architecture on which their software
will run, and often the number of proces¬
sors, their storage capacity, and their con¬
figuration. Formal techniques for manag¬
ing the development of software in this
environment must necessarily be complex.

The most popular approach to software
engineering for uniprocessors is to begin
with a set of requirements, develop a pro¬
gram, and then show that the resulting
program satisfies the requirements. The
structure of the program is not implicit in
the requirements, and it is the programmer’s
job, using a repertoire of techniques and
experience, to decide how the requirements
might best be met. It is questionable whether,
even in the sequential case, this approach is
better than a transformational one, in which
programs are derived by algebraic or algo¬
rithmic transformation from their specifi¬
cations. In a parallel environment, the
transformational approach seems much
better suited, since we do not already have

COMPUTER

Figure 1. A single instruction, multiple data computer.

a repertoire of standard techniques, and
proofs of requirement satisfaction are harder
to obtain.

Another major problem with the current
state of parallel computing is the lack of a
theory that relates the complexity of algo¬
rithms to the complexity of programs run¬
ning on actual machines. We have forgot¬
ten how deeply we make use of the fact that
Turing machines are universal. Therefore,
an implementation of an algorithm on one
manufacturer’s uniprocessor will differ in
speed by no more than a constant factor
from that on another’s. In the parallel world,
we have no such guarantees. The most
popular complexity models, the PRAM

(Parallel Random Access Machine) model
and the Boolean circuit model, both omit
important properties of physical architec¬
tures. The result is that prospective pur¬
chasers of a specific parallel computer must
face the fact that their intended applications
may run slower than benchmarks by a
nonconstant factor. Should the prospective
purchasers decide to buy a particular style
of computer, they won’t be assured that a
new development might not bring a new
computer to market that would be better
than the existing one by a nonconstant
factor. It is no wonder that users have, by
and large, held back from buying parallel

computers.
The lack of a relevant complexity theory

has also made it difficult to assess exactly
how much progress has been made in al¬
gorithm design. Algorithms developed for
different machine classes cannot easily be
compared, and the point at which a real im¬
provement has occurred is not always clear.

Progress in bringing parallel computing
into the mainstream can only be made by
addressing all of these issues. There is
some urgency about the problem. For the
time being, the speed of uniprocessors
continues to increase, parallelizing com¬
pilers make it possible to exploit some
parallelism in existing sequential software
on computers with moderate parallelism,
and there is a vast amount of existing se¬
quential software. We expect that these
factors will allow the current pattern of
sequential software development to con¬
tinue for a few years. However, it seems
likely that both hardware improvements
and parallelizing compiler improvements
will be subject to diminishing returns. In
addition, the continuing high cost of uni¬
processors relative to parallel computers
will force software developers to change to
an environment that can capture substan¬
tial parallelism from the start.

Experience suggests that when such a

switch occurs, the first viable approach
will quickly become the standard. It is

important that it should be the right one —
one that can provide a growth path for
software development for many years. One
of the challenges facing computer science
researchers is to develop this approach.

In this article, I will consider four major
parallel architecture classes:

• single instruction, multiple data or
SIMD computers,

• tightly coupled multiple instruction,
multiple data or tightly coupled MIMD
computers,

• hypercuboid computers, and
• constant-valence MIMD computers.

possible, but the four classes listed above
cover all general-purpose parallel com¬

puters.
A SIMD computer (see Figure 1) consists

of a single instruction processor that
broadcasts each instruction to a set of data
processors. Each data processor has its
own memory and is connected by a switch
to the other data processors. Thus, a single
instruction stream acts on a large number
of data streams. The important characteris¬
tic of this architecture class is that only one
action can take place at a given time. Even
coding instructions as data and triggering
them from the instruction processor can’t
significantly weaken this restriction, as I
will demonstrate.

A tightly coupled MIMD computer (see
Figure 2) consists of a set of processors Other, more specialized, architectures ai

Figure 2. A tightly coupled multiple instruction, multiple data computer.

December 1990 39

Figure 3. A hypercuboid MIMD com¬
puter.

connected to a set of memory modules by
a switch. Each processor can execute its
own thread of instructions, either synchro¬
nously with the other processors or asyn¬

chronously, and can access any memory
location through the switch. Processors

cannot communicate with each other ex¬
cept by writing to locations that can then be
read by others. The important property of
this architecture class is that, at least until
optical technology has developed further,
there is considerable latency in the switch.
If the number of processors is p, then the
switch depth (and, hence, latency) is £i(p).
Attempts by more than one processor to
read from the same location (in fact, a
location in the same module) will fail.

A hypercuboid computer (see Figure 3)
is loosely coupled, that is, it consists of
processor/memory pairs connected by a
communication network. Each processor

controls its local memory and can only
access a location in the memory of another
processor by requesting it to read the value
and communicate it, or by sending it a
value and asking for it to be stored. Hy¬
percuboid architectures have a communi¬
cation topology in which the number of
links per processor grows as the logarithm
of the number of processors in the computer.
The hypercube is the best known example
in this class. The diameter (that is, the
number of links that a message must traverse
between most distant processors) is loga¬
rithmic in the number of processors.

A constant-valence MIMD computer (see
Figure 4) is like a hypercuboid computer.

except that the number of links per proces¬
sor is a small constant. Similarly, the diam¬
eter of the communication network is log¬
arithmic in the number of processors. The
chief difference between this class and the
hypercuboid is the restricted capacity for
communication caused by the sparsity of
communication links. As I will show, this
difference is crucial to performance. Fur¬
ther description of architecture classes and
their characteristics can be found in an

earlier article.1
The remainder of this article

• reviews Valiant’s argument2 that the
PRAM model is universal over tightly
coupled and hypercube systems, but not
over constant-valence-topology, loosely

coupled systems—thus showing precisely
how the PRAM model is too powerful to
permit broad universality;

• discusses ways in which a model of
computation can be restricted to become
universal over less powerful architectures;

• introduces the Bird-Meertens formal¬
ism and shows how it is used to express
computations in a compact way;

• shows the surprising result that the
Bird-Meertens formalism is universal over
all four architecture classes — the main
result of the article — and shows that
nontrivial restrictions of functional pro¬
gramming languages exist that can be ef¬
ficiently executed on disparate architec-

• discusses how the Bird-Meertens for¬
malism is the basis for a programming
language and shows that it is expressive
enough to be used for general programming;

and
• reviews other models and programming

languages with architecture-independent

properties.

Universal models

Valiant2 carried out a careful analysis of
the universality of the PRAM model over
the four architecture classes described

above.
The PRAM model is an abstract machine

consisting of p processors, each of which

can, in unit time, carry out a local memory
access, a global memory access, and a
standard instruction. It is thus an approxi¬
mation to a tightly coupled MIMD com¬
puter, but one that ignores the complications
of memory and switch. The PRAM mem¬
ory is considered to be a single, shared
memory accessed through a zero latency

switch (see Figure 5). Figure 4. A constant-valence MIMD computer.

40 COMPUTER

Figure 5. A PRAM machine.

The sequence of steps executed by a
single PRAM processor is called a thread.
The number of time units a thread takes to
execute is exactly the number of steps it
contains. Because the only way a depen¬
dency between threads can be implemented
is by one thread writing to memory and
another reading the stored value, a depen¬
dency requires two-unit time steps. This is
indicated by a two-unit arrow from one
thread to another (see Figure 6).

A particular computation may be
scheduled in many ways using different
amounts of parallelism. Each schedule
produces a trace consisting of threads. In
what follows, we assume that the schedule
chosen is as compact as possible, that is, it
uses as little time and as few processors as
possible. Thus, we assume, without loss of
generality, that each thread contains a step
at each time. For a computation of size n, we
can characterize its parallelism and exe¬
cution time by considering the width and
length of its trace.

Suppose that the trace has pin) threads
and tin) steps. By our assumption of com¬
pactness, the trace forms a t(n) by pin)
rectangle. We say that the cost of the PRAM
computation is tin) ■ pin), representing the
total amount of resources that must be

used.
We define a computation model to be

universal over an architecture class if there
is a nontrivial architecture in that class that
can emulate computations with time-par¬
allelism products of the same order as their
costs in the model. For example, the PRAM
model would be universal over a particular
architecture if a PRAM computation taking
time t(ri) and pin) processors could be ex¬
ecuted on that architecture in time tin) on
p{n) processors, or in time 2tin) on pin)/2
processors.

Emulation on tightly coupled com¬
puters. Let us consider the PRAM model
of computation implemented on a variety
of architectures, beginning with the tightly
coupled MIMD class. For this class, the
switch is the performance bottleneck.
Crossbar switches are very expensive in
hardware, and optical switches are still
highly experimental. Conventional dynamic
switches require a traversal time logarith¬
mic in the width of the switch, so that a p
processor system has an fl(log p) cost for
each global memory access.

If we consider a straightforward imple¬
mentation of this computation model on
such an architecture (with pin) proces¬
sors), we incur a time penalty, because
each of the global accesses that takes unit

time in the model takes logarithmic time on
the real machine. Thus, the computation
will take tin) log pin) time units, increas¬
ing the time-parallelism product by a fac¬
tor of log pin). Hence, this emulation is not
universal. In fact, this example shows that
we could not have defined a stronger form
of universality in terms of execution time
alone, since any real implementation incurs
nonunit-time delays for references to dis¬

tant data.
Fortunately, we can still construct a time-

parallelism optimal simulation by reducing
the number of processors to compensate
for the increased memory latency. We re¬
duce the number of processors to pin)/log
pin) and use each processor to execute log
pin) threads of the computation in a kind of
prescheduled multitasking. Each processor
executes the first step of its first thread,
then the first step of the second thread, and
so on. After executing the first step of log
pin) threads, it executes the second step of
the first thread, the second thread, and so
on (see Figure 7). The elapsed time between
successive steps of the same thread is 0(log
pin)) while the latency of the switch is

log(iogpio)< logp(n)

Thus, ignoring potential contention in
the switch, this emulation executes in time
tin) log pin) using pin)/log pin) proces¬
sors, giving an optimal time-parallelism
product. This lower bound on switch tra¬
versal can be achieved by a result of
Mehlhorn and Vishkin,3 which shows that
memory hashing can spread the memory
references uniformly with high probabili¬
ty. This makes contention in the switch

Notice that, to achieve this result, more
parallelism must exist in the computation
than in the machine, a property that Valiant
calls parallel slackness.4 The virtual par¬
allelism of the computation must be much
larger than the physical parallelism used to
execute it. This really means that it doesn’t
help to use extra hardware for a computa¬
tion — a thousand-way parallel algorithm
can only make good use of a hundred-way

parallel computer.
Unfortunately, this class of architectures

does not seem to be a good candidate for
long-term development. The problem lies
in the scalability of the switch. Unless
optical interconnects make a revolutionary

pendencies.

December 1990 41

difference, today’s estimate of the maxi¬
mum possible switch size is about 10,000 X
10,000. As existing architectures are with¬
in an order of magnitude of this size, long¬
term prospects do not seem attractive.

Emulation on hypercuboid comput¬
ers. Let us now consider emulating PRAM
computations on a loosely coupled multi¬
processor where the number of communi¬
cation links from each processor grows as
the logarithm of the number of processors.
We call such systems hypercuboid, since the
hypercube is the best known example of
the class. Each processor has its own local
memory, but can only access the data in the
memories of remote processors by using a
network of communication links.

The global references in our computation
model must be transformed into messages
to other processors that will not necessar¬
ily be adjacent. Hence, messages might
travel through a number of intermediate
communication links. We call the maximum
number of links traversed the effective di¬
ameter d. By a theorem of Bokhari and

Raza,5 the diameter of any connected graph
can be reduced to logarithmic by adding at

most one new edge per vertex. There is
thus little point in considering any static
communication topology that has a diam¬
eter worse than logarithmic in the number
of processors; such a topology could al¬
ways be improved by adding only a single
extra communication link to each proces¬
sor. So, even a path topology could have its
diameter reduced to logarithmic and its
valence increased only to three. We
therefore assume that in practical systems
d is bounded above by log p.

A direct emulation of the PRAM model
will result in the same increase in execu¬
tion time as for the tightly coupled imple¬
mentation because unit-time global refer¬
ences take logarithmic time on the real
machine. We use the same multitasking
technique to reduce the number of pro¬
cessors, scheduling the steps just as before.
The time between successive steps of the
same thread is once again logpin), and thus
enough time exists for references to the
opposite extremity of a pin)/log pin) pro¬
cessor machine to complete. The argument
that this lower bound can be achieved in
the presence of contention depends on two
probabilistic results:

• memory hashing, to spread references
uniformly; and

• two-phase randomized routing.2

Two-phase randomized routing chan¬
nels a message from A to B by first sending
it from A to some randomly chosen pro¬
cessor C by the straightforward shortest
route, and then sending it from C to B, again
by the shortest route. The total distance
travelled does not exceed twice the diam¬
eter of the network; this strange procedure
reduces the probability of contention to an
arbitrarily small amount. On the hypercube,
it guarantees to deliver log pin) permuta¬
tions in time log pin) with overwhelming
probability. The total time taken for the
emulation is tin) log pin) with parallelism
pin)/log pin), so that again we have a uni¬
versal emulation. Parallel slackness is again
required in the computation.

This architecture class is also problem¬
atic with respect to scalability. The number
of links per processor depends on the size
of computer in which it is embedded. Thus,
it is not possible to build a scalable computer
without replacing the processors whenever
the system size is doubled.

Emulation on constant-valence com¬

puters. Let us now turn to loosely coupled,
fixed-valence topology multiprocessors. In
such computers, each processor has only a
fixed number of communication links.
Hence, such computers can be built as
arbitrary size ensembles of the same basic
processor. As before, we assume that the
network diameter is at most logarithmic in
the number of processors.5

A simple counting argument suffices to
show that the restricted connection struc¬
ture of such architectures must prevent
universal emulation on them. Suppose we
have a p processor machine, that there are
a communication links per processor, and
that the effective communication diameter
(that is, number of link traversals) of
messages is d. In a single instruction step,
as many as pd message traversal require¬
ments may be generated. Of course, these
requirements are partly obligations for the
future, as they must be satisfied on subse¬
quent steps. The number of link slots
available to transmit messages during a
single step is pa. Now d is logarithmic in
the number of processors while a is a small
constant depending on the processor design.
Therefore, on average, the communication
system will not be Able to deliver messages
as quickly as they are generated. To com¬
pensate, the processors must be slowed by
at least a factor of dla.

42 COMPUTER

We use the same multitasking approach
to schedule the steps of our computation
model. Global references take time at least
logarithmic in the number of processors
extended by a factor of d/a, giving a total
execution time of

d
t(«) ■ log p (n) ■ -

on p(n)/log p(n) processors. The lower
bound on communication time can be
achieved for the cube-connected-cycles

topology, using memory hashing and two-
phase randomized routing. However, uni¬
versal emulation is clearly not possible for

this class of architectures.
The class of constant-valence topology

MIMD computers is of great practical in¬
terest because computers in the class are
scalable since the neighborhoods of each
processor are homogeneous. Unlike the
two classes previously considered, this class
contains computers with extremely large
numbers of processors.

Emulation on SIMD computers. Let us
consider the fourth architecture class, the
SIMD computers. Simulating our PRAM
computation on a SIMD computer is dif¬
ficult. Using a local table, a SIMD machine
can simulate a MIMD machine by decod¬
ing each instruction broadcast into an in¬
struction to execute. This broadcast in¬
struction can be considered an index into
the table; the table entries are then the

instructions themselves. The question is
whether such a simulation can be carried
out without loss of universality. The gen¬
eral belief is that this cannot be so (it has
the status of a folk theorem), but I have
been unable to find an existing proof. The
following theorem shows that universality
cannot be maintained, except in the trivial
case. It is based on the extra uniformity that
a SIMD computer requires (a similar proof
based on interprocessor communication is
probably possible). The proof has the ad¬
vantage that it applies even if the PRAM
processors compute entirely independently.

Theorem: An arbitrary PRAM computa¬
tion cannot be simulated on a SIMD
architecture without increase in the time-
parallelism product, except for the trivial
simulation on a one-processor SIMD

machine.
Proof : We assume that a SIMD architec¬

ture has a bounded bandwidth communica¬
tion channel that broadcasts from the (single)
instruction processor to the data processors.
Call this bandwidth x. Let IS be the cardi¬

nality of the instruction set of the data
processors, Then x is bounded above by

log IS.

Suppose the PRAM calculation uses p
processors. Then, there are ISP possible steps
in the PRAM calculation. Suppose the
PRAM calculation is simulated by a SIMD
architecture with m processors. Without loss
of generality, we can assume that m < p
since a PRAM computation that forces
absolute dependencies between successive
steps can always be constructed; such a
program cannot make use of more than p
processors. Each step of the PRAM cal¬
culation is simulated by p/m steps of the
SIMD machine, with each set of m opera¬
tions chosen arbitrarily. There are ISm
possible different configurations of m of the
PRAM operations, so that each SIMD step
requires broadcasting log ISm bits. With
bandwidth x, this takes time

log ISm

Thus, the total time to simulate one step of
the PRAM computation is

log ISm^

and the time-parallelism product for the
simulation is

time-parallelism product = log IS ■ -jr

The time-parallelism product of the step of
the PRAM computation is p.

Assuming thatx = log IS (the usual way
SIMD machines are designed), we see that
the slowdown is the expected m\ hence,
when m = 1, the simulation remains uni¬
versal, but it is suboptimal for all larger
values.

The single step of the PRAM computa¬
tion can be extended to an arbitrary number
of steps; and a factor of 5 appears in both of
the calculations above. Hence, a full log
ISm bits are needed to handle all possible
ISm combinations. A PRAM computation
long enough to use all possible combinations
no matter how the m are chosen can always
be constructed.

This proof does not depend on any
properties of the data processors used or
any encoding of the instructions. It is based
solely on the information flow across the
instruction processor/data processor
boundary. If the data processors are power¬
ful enough to execute instructions stored as

data, with direction from the instruction
processor broadcasting fetch, decode, and
execute, then the machine is best regarded
as a MIMD computer and other arguments
apply.

The class of SIMD architectures is also
of long-term interest because computers in
the class scale well; the only potential
bottleneck is the fan-out from the instruc¬
tion processor.

This shows that the PRAM model is
universal over the classes of tightly coupled
and hypercuboid multiprocessors. The
PRAM model is not universal over constant-
valence topology multiprocessors and
SIMD computers. Unfortunately, this is as
bad as it could be: Those architecture classes
that can optimally emulate don’t scale;
those classes that do scale force a suboptimal
emulation.

Restricted computation
models

The results in the previous section show
why the PRAM model cannot be made
universal over all four architecture classes.
On the one hand, it requires frequent
communication (possibly on every step);
on the other hand, many diverse operations
can take place simultaneously on different
processors. The first creates problems in
emulating the PRAM on communication-
poor architectures; the second creates
problems for SIMD architectures. A model
universal over all four classes will have to
be more restricted than the PRAM model,
limiting communication richness and im¬
posing more regularity on simultaneous

A weaker model is not necessarily a bad
thing. It was decided long ago that a se¬
quential von Neumann machine’s capability
to treat instructions as data was not worth
the problems it caused in software devel¬
opment and execution. Most von Neumann
machines might as well be considered as
Harvard architectures. Much the same
reasoning was used to restrict imperative
languages to a small set of control structures
and to insist that programs be developed in
a modular way.

There are many ways in which the PRAM
model of computation might be weakened.
There are two ways to treat the problems
caused by communication: reduce the fre¬
quency of communication or reduce the
distance each message travels. These sug¬
gest different, and largely incompatible,
new models.

December 1990 43

Glossary

Concurrent-read PRAM: One in which simultaneous reads
from the same memory location are allowed in unit time. It is
usually implemented by replicating the value on its way from
the memory to the processors.

Concurrent-write PRAM: One in which simultaneous writes
to the same memory location are allowed in unit time. The ac¬
tual value stored may vary: It may be a randomly chosen
member of the set of values written, the result of applying an
associative operation to the set of values, or the value from
the lowest numbered processor participating.

Cube connected cycles: An interconnection topology that
has many of the properties of the hypercube but only requires
constant valence. Imagine a hypercube of dimension d. d
links converge on each corner. A cube connected cycles to¬
pology is obtained by removing the corners and replacing
them with a cycle of size d.

First-order functional programming: Programming with
functions that may take only data as their arguments. Many
dataflow languages are first order.

FP/FL: Languages designed by Backus et al. They are built
using first- and second-order functions. Much program trans¬
formation can be done using identities that are variable free;
that is, they are identities of the functions only.

KIDS: Kestrel Interactive Development System, an algo¬
rithm development system built at the Kestrel Institute. It re¬
quires minimal user direction to derive algorithms of a number
of common kinds: divide-and-conquer, dynamic programming,
etc.

Loosely coupled MIMD computer. One in which each pro¬
cessor has its own local memory and is connected to other
processor-memory pairs by an interconnection network.
There is no direct access by one processor to another’s
memory.

Memory hashing: A technique for allocating variables to
memory locations or modules such that, probabilistically,
there is little chance of collisions during typical access pat¬
terns. It is based on uniform hashing functions.

Model of computation: An abstract but computable descrip¬
tion of a computation. It usually corresponds to an abstract
machine that can execute the model directly.

OBJ: A language based on order-sorted equational logic.
Program code consists of equations that are interpreted as
rewrite rules. Rewriting is done modulo commutativity and as¬
sociativity and user-defined evaluation strategies may be de¬
fined. This provides a very flexible evaluation mechanism that

can emulate other programming techniques.
Parallel slackness: The property of having much more virtu¬

al parallelism in a computation than is available on the physi¬
cal machine executing it. Its presence often allows latency to
be hidden.

PRAM: Parallel Random Access Machine, a popular com¬
putation model based on an abstract multiprocessor consist¬
ing of processors connected to a shared memory by a switch.
In unit time, each processor can access its local memory or
registers, access the shared memory, and perform a standard
operation.

Second-order functional programming: The programming
language contains (first-order) functions and data, but also
functions that may take other functions as arguments. Usually
the set of second-order functions is fixed.

SIMD computer. One in which a single instruction proces¬
sor controls a set of data processors that simultaneously exe¬
cute the operation broadcast by the instruction processor.
The data processors are interconnected so that they can per¬
mute data among themselves.

Tightly coupled MIMD computer. One in which there is a
large shared memory that is equally accessible to all proces¬
sors. Because of the need to arbitrate the access to the
shared memory, processors are not as independent as in
loosely coupled MIMD computers.

Two-phase randomized routing: A routing algorithm that
probabilistically reduces contention in static interconnection
networks. It works by choosing a random destination for each
message, routing it from the source processor to that random
processor by a deterministic algorithm, and then routing it on
to its destination using the same deterministic algorithm. This
at most doubles the path length taken and spreads the load
evenly across the communication paths.

Universal: A computation model is said to be universal over
an architecture class if it can be simulated on that class with¬
out increasing the time-processors product required.

VLIW: Very long instruction word architectures use small
fixed amounts of parallelism by constructing an instruction
thread that contains a number of concurrent subthreads. This
amount of parallelism can be extracted from ordinary sequen¬
tial code at compile time using techniques rather like horizon¬
tal microcode compaction.

XPRAM: A variant of the PRAM suggested by Valiant. Ref¬
erences to shared memory are counted as taking unit time
but can only occur on every Lth step in each processor.

Valiant has proposed the bulk synchro¬
nous parallel model, or XPRAM, a model
which reduces the frequency of communi¬

cation. It corresponds to a PRAM model in
which nonlocal communication is con¬
strained to occur no more frequently than
every L step in each processor. Choosing L
to be the size of log p(n) reduces the com¬
munication requirements enough to permit
a universal emulation on the constant-va¬
lence topology architectures. A fortiori,
universal emulations remain possible for

tightly coupled and hypercuboid archi¬

tectures.
The XPRAM can be regarded as a PRAM

in which the granularity of the steps has
increased to L. The instruction set of the
XPRAM consists of all threads of length L
from the original PRAM. However, the
structure of the computation now depends
on the size of the target machine. Using a
larger machine means choosing a larger L
and, hence, recasting the algorithm so that
global communication is less frequent. This

seems unsatisfactory and hard to imple¬
ment. The kind of decisions required seem
too difficult for a programmer, although
they could conceivably be incorporated
into a compiler. For example, work in
compiling for VLIW (very long instruction
word) architectures suggests that it is pos¬
sible to recast algorithms for small values
of L, but the technique will not work for
arbitrary-sized L.6 If L is pragmatically
bounded above by 10, computers are
bounded to about a thousand processors.

44 COMPUTER

small even by today’s standards. The
memory allocation required is also quite
unusual. There is a considerable advantage
in locality of reference in a single proces¬
sor, but memory hashing is required for
interprocessor reference. Also, the XPRAM
model does not address the problem of em¬
ulation on SIMD architectures.

The second way of restricting the com¬
putation model is to reduce the distance
over which communication takes place. I
call this locality-based computation. Un¬
der this model of computation, nonlocal
references can only be to threads that are
close under some metric, in fact within
some constant distance. Such a computa¬
tion model can be universal over constant-
valence topology multiprocessors, because
the effective diameter d is a constant. As a
result, it becomes possible to use only a
small (constant) degree of multiplexing to
hide latency — only constant parallel
slackness is required. This allows more
effective use of hardware.

First- and second-order functional pro¬
gramming are two attractive forms of
locality-based computation. The appropri¬
ateness of first-order functional program¬
ming can be seen by regarding a computation
as a dataflow graph consisting of nodes,
representing functions, and arcs, describ¬
ing the flow of data from one function to
another. If the functions have only a small
number of arguments and each produces
only a single result, then the nodes are of
low valence and can be mapped onto a
constant-valence topology without
“stretching” any of the arcs by more than a
small amount. Hence, locality is always
guaranteed.

Locality-based computation using sec¬
ond-order functions is even more attractive.
The arguments to second-order functions
must be functions that have some similar¬
ities. For our purposes, the similarities we
are interested in are consistent communi¬
cation patterns and uniform computation
steps. If we can find a set of second-order
functions such that each requires only
constant locality, then the set can be used
as a model of computation that will be
universal over constant-valence topology
multiprocessors and, therefore, over tight¬
ly coupled and hypercuboid multiproces¬
sors as well. If the set of second-order
functions has appropriate regularity, then
we can consider emulations on SIMD

computers as well.
The Bird-Meertens formalism7 provides

exactly such a set of second-order functions,
although they were developed with rather
different goals in mind. In the next section.

I introduce this formalism, show that uni¬
versal emulations over constant-valence
and SIMD systems are possible, and dis¬
cuss the expressiveness of the formalism.

The Bird-Meertens
formalism

The Bird-Meertens formalism consists
of a set of theories built on a base algebra
with unary and binary functions. Each theory
captures the behavior of a particular class
of data structures. The theory of lists has
been well developed and some work has
been done on the theories of trees and

arrays.
A theory adds to the base algebra a set of

second-order functions and laws that relate
them. A program consists of a composition
of functions, in much the same style as FP.
The laws provide a set of meaning-pre¬
serving transformations that can be applied
for optimization or regarded as rewrite
rules in the style of OBJ.8 The Bird-Meertens
formalism thus owes something to APL
and to the treatment of lists in conventional
functional languages.

The theory of lists adds the following
second-order functions to the base algebra:
map (*), reduce (/), directed reduce
accumulate (Jb), prefix (//), filter (<l),
inits, tails, and cross product (x). If/is a
unary function, © a binary function writ¬
ten in infix notation, and lists are indicated
by brackets, then we can define map applied

to/by

f*[a, b, c, ...] = \fa,fb,fc,...]

The function reduce is defined by

©/[a, b, c, x] = a®b®c® ...®x

assuming that © is associative, so that
bracketing is not needed on the right hand
side. If © is not associative, we can define

a directed reduce by

©-^[a, b, c, x] = (((a®fc)ffic) ...®x)

The accumulate function defines a pre¬
fix computation over an operator that need
not be associative. It is written +f> and is
defined by

©fAe[a, b, c, ...,x] = [e, effia, (e@a) ®b,
.., (...((«©«)©...) ©x]

An associative version of accumulate
called prefix can be defined by

©// [a, b, c,..., x] = [a, a®b,..., (...(a©...)
ffix]

The filter operation provides selection.
If p is a Boolean predicate then

p < [a, b, c, ..., x]

selects those elements of the list for which
p is true. Thus, its result is a (possibly
empty) list.

The function inits computes the initial
segments of a list and returns them as a list.
Hence,

inits [a, b, c.x] = t U, [a], [a, b\,...,
[a, b, c,..., x]]

The function tails computes the final seg¬
ments of a list, that is, inits of the reverse of
a list.

The cross product operator forms the list
of cross products of elements of two lists so

that

[a, b,..., m] xe [n, o.z] = [a®n, a®o,
..., affiz, b®n, ..., m®z]

I illustrate the Bird-Meertens style with
a simple example; many more examples,
together with their derivations, can be found
in references in the “Further reading” sec¬
tion. The maximum segment sum problem
has been regularly discussed in program¬
ming literature. It can be stated as: Given a
list of integers, find the contiguous sublist
with maximum sum. Clearly, the following
computation

mss = 17 ■ +/* • segs

where T is the binary maximum operator, +
is integer addition, and segs computes all

of the contiguous sublists of a list, meets
this specification. The contiguous sublists
of a list can be computed in the way implied
by the following definition, in which 11 is
the binary list catenation operator,

segs = If / ■ tails * ■ inits

This computation finds the maximum seg¬
ment sum by computing all of the contigu¬
ous sublists of the given list, summing the
elements of each, and then selecting the
maximum of those sums. This is clearly a
computationally expensive solution to the

problem.
The laws of the theory of lists can be used

to rewrite the solution; after a nontrivial
derivation, the following solution results

December 1990 45

mss = 17 -® iV»0

a®& = (a + £>) T 0

The new version generates many fewer
intermediate values and can be computed
in two pipelined passes over the list. It uses
the fact that, if the running sum falls below
zero, then the corresponding sublist cannot
be part of the maximum sum segment. The
faster algorithm is not obvious, but is de¬
rivable by standard transformations. Some

insight is required, but the process seems
susceptible to automation. For example,
the Kestrel Interactive Development Sys¬
tem (KIDS)9 can develop programs from
specifications with minimal user input about
the kind of algorithm that is appropriate —
divide-and-conquer, dynamic program¬
ming, and so on.

Demonstrating
universality

To show that the second-order functions
are universal over constant-valence topol¬
ogy multiprocessors, we must show that
the time-parallelism product of an emula¬
tion is no worse (asymptotically) than the
equivalent PRAM calculation, and that
communication is sufficiently local that
communication links are not saturated. In
the following discussion, assume that lists

are stored in a kind of normal form in
contiguous processors, one element in each.
Also assume that each list is of length 0(p)
for ap-processor system, corresponding to
our assumption that at leastp(n) processors
were available to execute PRAM computa¬
tions. Each processor is aware of the length
of the list. In each of the following imple¬
mentations, this information is sufficient to
permit clean termination of each function.

Here, I give a case analysis for each of
the second-order functions.

Map: The computation of a map requires
each processor to apply a given function to
the list element it holds. This can be done
in constant time if we assume that the
function is treated as part of the program,
that is, it does not have to be broadcast at
execution time. No interprocessor commu¬

nication is required.
Reduce: The PRAM time complexity of

reduce is logarithmic in the size of the list.
I show that the same time complexity can
be achieved using the following technique:
A reduction can be carried out in a cube

The Kestrel Interactive
Development System can
develop programs from

specifications with
minimal user input about

the kind of algorithm
that is appropriate —
divide-and-conquer,

dynamic programming,

and so on.

connected cycle network by first doing the
reduction in each cycle. This takes time
linear in the cycle length, that is, log p. The
remaining steps of the reduction can be
done through dimension-by-dimension
collapse. All of the values in one hyper¬
plane are transmitted to the other parallel
hyperplane, the ® operation is performed
at each corner, and the process is repeated
in another dimension. Changing dimen¬
sions requires a shift around each of the
cycles. All of the communication takes
place with nearest neighbors in the topol¬

ogy-
Directed reduce: The PRAM complex¬

ity of a directed reduction is linear in the
size of the list. It can clearly be implemented
on the constant-valence multiprocessor in
linear time, using only nearest neighbor
communication, provided a Hamiltonian
path exists. (A Hamiltonian path passes
through every vertex in the graph exactly
once. An example of a graph without such
a path is a binary tree).

Accumulate: The accumulate function
uses exactly the same communication
pattern as the directed reduce, except that a
copy of the partial result is left at each
processor.

Prefix: The parallel implementation of
prefix is due to Ladner and Fisher10 and has
a PRAM complexity that is logarithmic in
the size of the list. In a constant-valence
topology multiprocessor, their approach
requires some nodes to transmit a loga¬
rithmic number of messages to others.

A constant locality parallel prefix can be
computed in a cube-connected cycle topol¬
ogy as follows: First, compute the prefixes
in each cycle of a cube connected cycles
network. Then, use the following hypercube
prefix algorithm. Each processor (with the

result of a prefix from a cycle) holds two
values, the sum of all the values in its
current hypercube and its own partial sum
(that is, the prefix value). Matching hyper¬
cubes are recursively merged into a larger
dimension hypercube by having corre¬
sponding corners exchange their total sum,
computing a new total sum, and those
processors in the “upper” hypercube using
the total sum from the other half to com¬
pute new partial sums. The hypercube part
of the algorithm is clearly logarithmic, as
is the initial prefix at each corner, for an
overall logarithmic algorithm.

Filter: The filter operation returns a list

in which those elements that do not satisfy
the predicate have been removed. Its PRAM
complexity is therefore logarithmic since,
after elements have been deleted, those
that remain must establish their new posi¬
tion in the list. On the constant-valence
topology, the same operations must be done
and take the same amount of time. However,
one extra step, moving the values to con¬
tiguous processors, must also be done. The
determination of new position can be cal¬
culated as

+ i'Aq (if p then Kx else K0)

where Kt is the constant i function.
Moving the values to their correct posi¬

tions may require arbitrary data movements.
However, the destinations of each element
of the list are unique, so the routing required
is a permutation. Using two-phase ran¬
domized routing, an arbitrary permutation
can be realized in logarithmic time in a
network such as cube connected cycles.
The use of two-phase randomized routing
only occurs during filter operations. Each
filter operation begins with a logarithmic
time prefix operation; hence, repeated use
of two-phase randomized routing is sepa¬
rated by a logarithmic time gap. This pro¬
vides sufficient time to guarantee that
successive routing steps will not interfere
with each other. Thus, we can maintain an
overall logarithmic time for the operation.

I nits: The PRAM complexity of inits is
clearly linear since a linear number of
processors must generate a quadratic amount
of data. It can be computed on the constant-
valence topology by circulating one copy
of the list from left to right along a Ham¬
iltonian path and adding the newly arrived
element to the list being constructed at
each processor. This takes linear time.

Tails: The tails operation can be com¬
puted in the same way as inits, except that
the shift is from right to left.

Cross product: The cross product of two

46 COMPUTER

lists, each of which is in normal form, can
be computed by circulating one list around

a Hamiltonian cycle and forming products
at each processor on each step. This takes
time linear in the length of the lists and
requires only nearest neighbor communi¬
cation. The PRAM complexity of the oper¬
ation is clearly linear.

Thus, the requirements for optimal
evaluation on a constant-valence topology
multiprocessor are the existence of a
Hamiltonian cycle, the capability to do a
tree-structured reduction in logarithmic

time, and the capability to deliver an arbi¬
trary permutation in logarithmic time. The
second requirement is almost trivial because
it amounts to requiring a log depth spanning
tree of finite valence (which can simulate a
binary spanning tree with no more than
constant slowdown), and any interesting
topology will have this property.

Both tightly coupled and hypercuboid
multiprocessors are much less restricted
than constant-valence topology architec¬
tures. Therefore, these results apply equally
to those architecture classes.

The SIMD implementations of the sec¬
ond-order functions are no more compli¬
cated than the constant-valence topology
implementations. In fact, the SIMD archi¬
tecture is more powerful, since the re¬
quirement for locality is removed. It re¬
quires a certain regularity or uniformity in
the computation because of the restriction
that all processors must execute the same
instruction at each step. The second-order
functions we have been discussing all pos¬
sess the required uniformity.

The details of the implementation of
each of the functions on SIMD computers
follow. We assume that the interprocessor
topology is at least as rich as a constant-
valence multiprocessor, so that communi¬
cation patterns take the same amount of
time as before. We need only show that
processors are either executing the same
operation or are idle during each step of the
computation.

Map-. As before, map can be applied in
constant time and requires no communi¬
cation.

Reduce-. A reduction can be carried out
by the obvious tree-structured algorithm in
which half the processors participate for
the first step, a quarter for the next step, and
so on. The complete reduction is done after
log n steps.

Directed reduce: A directed reduction
requires only a single processor to be ac¬
tive on each time step; hence, it takes the

Knowing that the Bird-
Meertens formalism is a

computation model that is
universal over four
important classes of

parallel architectures, it
should also be clear that

the Bird-Meertens
formalism can be executed
by uniprocessors and that

many of its functions can
exploit vector
architectures.

obvious linear amount of time.
Accumulate: The accumulate operation

is done in the same way as a directed
reduction.

Prefix: The parallel prefix algorithm
described above can be easily adapted to a
SIMD architecture and still takes logarith¬
mic time.

Filter, inits, tails: As before, these can
be done using prefix computations.

Cross product: The same technique used
for constant-valence computers can be used,
giving a linear time algorithm.

I have shown that the Bird-Meertens
formalism is universal over a diverse class
of architectures, including computers that
have limited communication or require
uniformity of action. A computation model
so restricted might not might have been
expected to be powerful enough to be useful
as a programming tool. The surprising re¬
sult of this work is that such a universal
model can be powerful enough to program
most applications in a natural, although
novel, way.

Benefits of the Bird-
Meertens theory

Knowing that the Bird-Meertens for¬
malism is a computation model that is
universal over four important classes of
parallel architectures, it should also be
clear that the Bird-Meertens formalism can
be executed by uniprocessors and that many
of its functions can exploit vector architec¬

tures. Thus, it is truly an architecture-inde¬
pendent programming language. It ad¬
dresses many of the problems raised at the
beginning of this article.

A natural question you might ask is
whether the formalism is expressive enough
or whether programmers will find it too
restrictive. Making this case would require
more space than is practical here, but in¬
terested readers can read the extensive
variety of papers discussing applications.
While this does require learning a new way
of thinking about parallel computation,
those who have used it seem to find no
difficulty. In fact, several nonobvious im¬
provements on existing algorithms have
been discovered.

The choice of second-order functions is
critical. Spivey has shown11 how the basic
set of second-order functions on lists arise
as adjunctions between appropriate cate¬
gories. Because such adjunctions are unique,
all algebraic properties of list functions are
captured by the laws that arise from the
adjunctions. Thus, we can be sure that all
algebraic properties of lists have been cap¬
tured by these laws.

Software written in a language that is
universal over a wide range of architectures
is portable when it is written. But it also has
a potentially long life span because it can
be moved onto new hardware platforms as
they are developed. Programmers also are
less committed to a particular architecture
class because they write in much the same
way for any architecture.

The Bird-Meertens formalism also ad¬
dresses some of the difficulties of software
engineering for parallel architectures. In
fact, it was developed with software engi¬
neering goals in mind, as an environment
in which to do transformational program
development. This approach postulates the
ability to write down an initial solution that
manifestly meets a given requirement as I
did with the maximum segment sum
problem. In fact, it may be little more than
stating the requirements carefully. This
solution can then be transformed, using the
laws, which are actually algebraic identi¬
ties, as meaning-preserving rewrite rules.
This continues until a sufficiently efficient
implementation is derived. Considerable
experience with human derivation has been
accumulated, and there seems to be no
reason why the process could not be at least
partially automated. I am investigating this
possibility.

There is no guarantee that transforma¬
tions will preserve the execution complexity
of functions. It seems sensible to define
hew second-order functions whenever we

December 1990 47

can build implementations for them that
are faster than the corresponding trans¬
formed functions would be. For example, a
left accumulate can be defined in terms of

a left reduction

®-H>e = ®-he

where

x®a =x ft [lastx®a]

but this definition is not computationally
interesting since we know how to imple¬
ment the left accumulate with the same
parallel time complexity as the reduction.
Obviously, this creates new problems since
we cannot be certain that we know all
useful transformation rules. Insight will
be required to notice when some new
composition admits a fast implementation.
There are many interesting research prob¬

lems here.
The analysis of the performance behav¬

ior of each of the second-order functions

can be used to form the basis of a consistent
complexity theory over different architec¬
tures. It can also be used to control program
transformations, so that it is clear what an

efficient solution actually is. Second-order
functions such as reduce have recursion
embedded within them, but it isn’t visible
to the programmer. However, when a cost
measure is applied to functions such as
reduce, the result is a first-order recursive
function for which it is difficult to find

general closed form solutions. We have
shown that the complexity of the second-
order functions is asymptotically the same
as the PRAM versions, but the constants
are almost always larger. Thus, it is inter¬
esting to consider architecture-directed
optimizations that would help to reduce the
practical disadvantages of the emulations.
Many interesting research questions remain.

Other architecture-
independent languages

Attempts to find architecture-indepen¬
dent computation models or programming
languages take two approaches: restricting
the PRAM model by requiring the use of
new primitives; or removing restrictions
such as scheduling from the PRAM model.

Models that restrict the PRAM are easier
to implement because their demands on the
underlying hardware are more predictable.
Thus, providing performance guarantees

for such models is usually possible. At first
glance, it seems paradoxical that a model is

restricted by adding primitives, but perfor¬
mance gains are achieved by restricting
programmers to using the new primitives
rather than all of the flexibility of the original
model. For example, adding a structured if
and while to an imperative language is a
restriction of general programming, even
though it involves adding new language

constructs.
The first restriction I will consider is the

addition of concurrent read or concurrent
write at the same memory location. These
can be regarded as parallel read or write
primitives. As with all such primitives,
these are added because they can be effi¬
ciently implemented. On a tightly coupled
MIMD computer, the paths through the

switch from each processor to a fixed
memory location form a tree. If the internal
nodes of this tree can do simple computa¬
tions, they can merge requests for reads
from the same location and then distribute
the data when it returns from memory.
Writes to the same location can be merged
on their way through the switch using any
of a number of rules: keep one value and
discard the others, apply an associative
operation to the two values and transmit
the result, and so on. Thus, with the addi¬
tion of suitable (quite expensive) hardware,
concurrent read and write can be imple¬
mented at the same time cost as ordinary
memory access that is logarithmic in the
number of processors.

Another primitive that can be added to
the PRAM model is the scan, suggested by
G. Blelloch (see “Further reading”). A scan
is essentially a parallel prefix. Again, in a
tightly coupled MIMD computer, this op¬
eration can be implemented by the switch
in time logarithmic in the number of pro¬

cessors.
A.G. Ranade has suggested a further

restriction of the PRAM model (see “Fur¬
ther reading”). He describes a new primi¬
tive called multiprefix that generalizes scan.
Suppose that some set of k processors ref¬
erences a variable A, the processors are
ordered, and 0 is a binary operation. If the
initial value of A is a, then the execution of
the multiprefix MP{A, vh 0) by processor
i results in it acquiring the value a ©v, ©v2
0... 0Vj and the variable A ends up with the

value a 0vi 0... ®vk. Ranade shows that
the multiprefix operation will terminate
(with overwhelming probability) in logp(n)
steps. Thus, on a tightly coupled MIMD
computer, it is no more expensive in time
than memory reference. The Bird-Meertens
formalism can be regarded as an exten¬
sion of this approach to a set of primi¬
tives that is in some sense complete while

still being efficiently implementable.
The second approach is to build models

stronger than the PRAM in which the
programmer must say less about schedul¬
ing and communication. Such models are
harder to implement because the pro¬
grammer provides less information. But,
of course, the programmer’s job is easier

for the same reason.
Macro-dataflow is a popular model of

this kind. It is stronger than the PRAM
model because the programmer no longer
needs to specify the order of execution of
parts of the program, and there is no longer
any explicit memory. Instead, scheduling
is inferred at runtime by the presence of
arguments (“firing rule”), and memory is
replaced by tokens traversing arcs. Dataflow
machines attempt to create execution
schedules dynamically as a program exe¬
cutes. Doing this efficiently is the major
challenge of this approach.

Another programming language, or
perhaps abstract machine model, is W.J.
Daily’s parallel machine interface (see
“Further reading”). The PMI consists of a
set of mechanisms that can be efficiently
supported by the underlying parallel com¬
puters while being rich enough to allow
programming in a number of suitable styles.
The mechanisms act as an abstract machine
for which higher software layers can be
targeted, decoupling the software devel¬
opment process from the underlying im¬

plementation.
The abstract machine is considered to

consist of a number of nodes, each of which
can execute tasks. Tasks have their own
local memories, called segments. Segments
contain the entire context of a task, including
a flag indicating whether they are available
to run, and memory locations are tagged
with their full/empty status. Tasks on the
same node can access the segments of other

tasks.
Communication and synchronization are

both implemented by a single send primi¬
tive that transfers a block of data to another
node, places it in a segment, and flags the
segment as ready to execute. Thus, messages
can trigger actions on remote nodes. These
actions can mimic typical receive opera¬
tions, and they can also suspend or resume
other tasks on the destination node.

The PMI approach cannot provide any
guarantees about the performance of a
computation on a range of implementation
architectures. However, it is possible to
compute the complexity of a computation
on each individual architecture by exam¬
ining the implemented cost of the primitive.

Parallel languages that require even less

COMPUTER

of the programmer have also been suggest¬
ed. One of the best known is Linda, which
is perhaps best considered as a memory
abstraction that may be used in many pro¬
gramming languages. Thus, C-Linda, Ada-
Linda, and so on can all be built on the
same abstraction. Linda provides the ab¬
straction of a shared, content-addressable
memory that can be accessed by any pro¬
cess with equal ease. Both scheduling and
communication are handled by the system.
Programmers need only specify depen¬
dencies. The memory is called tuple space,
and the entities it contains are called tuples.

Four access mechanisms are provided:

• in selects, removes, and returns a tuple
from the tuple space based on the number,
types, and supplied values provided in the
call; missing values are filled in from the
values in the tuple;

• the primitive read selects and copies a
tuple from the tuple space (so that the tuple
is left in the tuple space for subsequent
accesses);

• the primitive out places a tuple in the
tuple space; and

• the primitive eval gets a tuple from the
tuple space, treats it as executable code,
and schedules it for execution.

This abstraction is very powerful because
of its capability to access data based on
partial descriptions and because of the ca¬
pability to start new tasks with little over¬

head. Storage, synchronization, and com¬
munication are all managed by the same
mechanism. In addition, tuple space might

survive the execution of a single program;
that is, it has some of the characteristics of
a file.

However, the power of the abstraction
creates problems for the implementer,
particularly on a loosely coupled architec¬
ture. If each tuple exists only once in the
tuple space, then accesses to it from other
processors are necessarily slow; if the tu¬
ple is replicated, then it is hard to implement
the semantics of in because in must guar¬
antee that all copies other than the one
returned are destroyed. The simulation of a
large-content addressable memory, partic¬
ularly one that may be accessed by a variety
of different key patterns, is also challeng¬
ing and creates substantial overhead. Thus,
although Linda provides a very pleasant
environment for the programmer, and one
that makes portability straightforward, it
does so at the expense of any guarantee
about performance.

Linda also makes it difficult to capture
fine-grained parallelism. For instance, the
obvious implementation of +/a by

in(a, x)
in(a, y)
out(a, x+y)

fails because of the potential deadlock when
the number of processors is as large or
larger than the number of elements of the
list. This seems unsatisfactory.

Another approach that requires no ex¬
plicit control of scheduling or communi¬
cation is K.M. Chandy and J. Misra’s Unity
and its relatives (see “Further reading”). A
Unity program consists of a loop around a
block of guarded statements. On any iter¬
ation of the loop, a statement whose guard
evaluates to true is executed. The choice of
statement is made nondeterministically.
Such a program can be executed by a par¬
allel computer by executing all statements
whose guards are true in parallel. This
simulates multiple iterations of the loop.
Unity was developed as a language for
reasoning about computation rather than

executing computation. Whether Unity is
implementable at any practical cost is not
clear.

However, a related approach called ac¬
tion systems has been considered as an
executable language. For example, R.J.R.
Back shows how a sequential program in
the formalism can be refined to a parallel
program suitable for either shared-memo¬
ry or loosely coupled architectures (see
“Further reading”). The refinement pre¬
serves total correctness, so that the attrac¬
tive reasoning properties can be retained
even while operational notions such as
parallelism are integrated. An implemen¬
tation on a transputer system with reason¬
able performance exists.

The somewhat surprising result that
a nontrivial computation model
exists that is universal over four

major classes of parallel architectures
(tightly coupled, SIMD, hypercuboid, and
constant-valence topology multiprocessors)
provides the basis for an architecture-inde¬
pendent programming language. Programs
developed in this language can be moved
from machines in one architectural class to
machines of another class without repro¬
gramming and without paying performance
penalties of more than constant factors.
Thus, this new model provides the flexibil¬
ity of Linda, but provides stronger guaran¬
tees about performance. Stronger results
may yet be obtained, depending on progress
in exploiting program optimization. This
question is being investigated.

The programming language for this new
model is closely related to the Bird-Meertens

formalism. This relationship makes it pos¬
sible to demonstrate that the language is

quite expressive, since extensive algorithm
development has been done within that
formalism. Categorical results also increase
confidence that the limited set of second-
order functions included in the language is
rich enough to capture all properties of
general lists. In addition, these results pro¬
vide a large set of algebraic identities that
can be used for optimization. ■

Acknowledgments

Discussions with Bill McColl, Gaytan Hains,
Laurie Hendren, and Kieran Herley greatly helped
me with the content and presentation of this
article, and I am grateful to them for their help.
I also thank members of the Programming Re¬
search Group at the University of Oxford in
England for their hospitality during my stay as a
visiting researcher. The Natural Sciences and
Engineering Research Council of Canada sup¬
ported this work.

References

1. D.B. Skillicom, “A Taxonomy for Comput¬
er Architectures,” Computer, Vol. 21, No.
11, Nov. 1988, pp. 46-57.

2. L.G. Valiant, “General-Purpose Parallel
Architecture,” Tech. Report TR-07-89,
Computer Science Dept., Harvard Univ.,
1989.

3. K. Mehlhorn and U. Vishkin, “Randomized
and Deterministic Simulation of PRAMs by
Parallel Machines with Restricted Granularity
of Parallel Memories,” Acfa/n/ormarica, Vol.
21, 1984, pp. 339-374.

4. L.G. Valiant, “Optimally Universal Parallel
Computers,” Proc. Royal Soc., 1987.

5. S.H. Bokhari and A.D. Raza, “Augmenting
Computer Networks,” in Proc. Int'l Conf.
Parallel Processing, IEEE Computer Soc.,
Aug. 1984, pp. 338-345.

6. A. Aiken and A. Nicolau, “Optimal Loop
Parallelization,” in Proc. SIGPlan 88: ACM
Conf. on Programming Language Design
and Implementation, R. Wexelblat, ed.,
1988, pp. 308-317.

7. R.S. Bird, “Algebraic Identities for Program
Calculation,” The Computer J., Vol. 32, No.
2, Feb. 1989, pp. 122-126.

8. J.A. Goguen and T. Winkler, “Introducing
OBJ3,” Tech. Report SRI-CSL-88-9, Com¬
puter Science Lab., SRI Int’l, Aug. 1988.

9. D.R. Smith and M.R. Lowry, “Algorithm
Theories and Design Tactics,” in Math.
Program Construction, Springer-Verlag

December 1990 49

Lecture Notes in Computer Science 375,
June 1989, pp, 379-398.

10. R.E. Ladner and M.J. Fisher, “Parallel Pre¬
fix Computation,” J. ACM, Vol. 27, 1980,
pp. 831-838.

11. J.M. Spivey, “A Categorical Approach to
Theory of Lists,” in Math. Program Con¬
struction,, Springer-Verlag Lecture Notes in
Computer Science 373, June 1989, pp. 399-
408.

Further reading

Ahuja, S„ et al., “Matching Languages and Hardware
for Parallel Computation in the Linda Machine,” IEEE
Trans. Computers, Vol. 37, No.8, Aug. 1988, pp. 921-
929.

Back, R.J.R., “A Method for Refining Atomicity in
Parallel Algorithms,” in Parle 89, Parallel Architec¬
tures and Languages Europe, Springer Lecture Notes
in Computer Science 366, June 1989, pp. 199-216.

Back, R.J.R., and K. Sere, “Stepwise Refinement of
Action Systems,” in Math. Program Construction,
Springer Lecture Notes in Computer Science 375, June
1989, pp. 115-138.

Backus, J., “Can Programming be Liberated from the
von Neumann Style: A Functional Style and Its Alge¬

bra of Programs,” Comm. ACM, Vol. 21, No. 8, Aug.
1978, pp. 613-641.

Backus, J., et al., “FL Language Manual, Parts 1 and 2,”
Tech. Report RJ7100, IBM Almaden Research Center,
Oct. 1989.

Bird, R.S., “A Calculus of Functions for Program
Derivation,” Oxford Univ. Programming Research
Group Monograph PRG-64, 1987.

Bird, R.S., “An Introduction to the Theory of Lists," in
Logic of Programming and Calculi of Discrete Design,
M. Broy, ed., Springer-Verlag, 1987 pp. 3-42.

Bird, R.S., “Lectures on Constructive Functional Pro¬
gramming,” Oxford Univ. Programming Research Group
Monograph PRG-69, 1988.

Blelloch, G„ “Scans as Primitive Parallel Operations,”
in Proc. Inf l Conf. Parallel Processing, CS Press, Los
Alamitos, Calif., Order No. 783, Aug. 1987, pp. 355-
362.

Chandy, K.M., and J. Misra, Parallel Program Design:
A Foundation, Addison-Wesley, 1988.

Dally, W.J., “Universal Mechanisms for Concurren¬
cy,” in Parle 89, Parallel Architectures and Languages
Europe, Springer-Verlag Lecture Notes in Computer
Science 365, June 1989, pp. 19-33.

Meertens, L.G.L.T., “Algorithmics — Towards Pro¬
gramming as a Mathematical Activity,” in Proc. Dutch
Center for Math, and Computer Science (CWI) Symp.
Math, and Computer Science, North-Holland, 1986, pp.
289-334.

Ranade, A.G., Fluent Parallel Computation, PhD the¬
sis, Yale Univ., 1989.

Valiant, L„ “A Bridging Model for Parallel Computa¬
tion,” Comm. ACM, Aug. 1990, pp. 103-111.

David B. Skillicorn is an associate professor in
the Department of Computing and Information
Science at Queen’s University, Kingston, On¬
tario, Canada. His research interests are in par¬
allelism, spanning architectures, languages, and
compilers.

Skillicorn received a BSc in 1978 from the
University of Sydney, Australia, and a PhD in
1981 from the University of Manitoba, Canada.
He is a member of the IEEE Computer Society
and the ACM.

Readers can write to Skillicorn at the Depart¬
ment of Computing and Information Science,
Queen’s University, Goodwin Hall, Kingston,
Ontario, Canada K7L 3N6, e-mail
skill @ qucis.queensu.ca.

INTERNATIONAL CONFERENCE ON

SOFTWARE ENGINEERING
SYSTEM DESIGN: RESEARCH & PRACTICE

Stouffer Hotel ■ Austin, Texas ■ May 13-16, 1991

Information on Technical Programs, Tutorials, Workshops, and Other Activities:

Barbara Smith • MCC Software Technology Program
P.O.Box200195 • Austin,TX78720 • 512/338-3336 • FAX 512/338-3899 • basmith@mcc.com

For Tools Fair Information:

Laurie or John Werth • Department of Computer Science
University of Texas at Austin • Austin, Texas 78712 USA • 512/471-7316 • FAX: 512/471-8885
lwerth@cs.utexas.edu • jwerth@cs.utexas.edu

| Sponsored by ACM Special Interest Group on Software Engineering IEEE Computer Society Technical Committee on Software ^

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC

CALL FOR PARTICIPATION

1991 INTERNATIONAL CONFERENCE ON
COMPUTER PROCESSING OF CHINESE

AND ORIENTAL LANGUAGES

August 13-16, 1991

Taipei, Taiwan

Sponsored by Chinese Language Computer Society

National Tsing Hua University, Hsinchu

Academic Sinica, Taipei

SCOPE
This conference serves as an international forum for researchers, system developers and users of information systems
which process Chinese, Japanese, Korean and other oriental languages. Papers are invited for, but are not limited to,
the following subject categories.

• Intelligent terminals and Workstations
• Character recognition
• Font design and generation
• Speech recognition and synthesis

Coding scheme
Database and information system design
Expert systems and applications
Man—machine interface

SUBMISSION OF PAPERS
Three copies of full paper written in English not longer than 15 double spaced pages should be sent to either

Prof. Wen—Hsing Hsu Prof. Yaohan Chu
Dept, of Electrical Engineering Department of Computer Science

National Tsing Hua University University of Maryland
Hsinchu, Taiwan, 30043 College Park, MD 20742

• Paper submission deadline: January 15, 1991
• Notification of acceptance: April 15, 1991
• Final Manuscript due: May 31, 1991

TUTORIALS
Proposals for tutorials should be submitted by
April 1, 1991 to:
Prof. Ching C. Hsieh
Computing Center
Academic Sinica
Nankang, Taipei, 11529

CONFERENCE CO-CHAIRPERSONS
Dr. Chao-Ning Liu
IBM Corporation
Yorktown Heights, NY

Prof. Hsiao—Chuan Wang
National Tsing-Hua University
Hsinchu, Taiwan

TUTORIALS COORDINATOR
Prof. Ching C. Hsieh
Academic Sinica
Taipei, Taiwan

PROGRAM COMMITTEE
Lydia Chan (Singapore)
Keh—Jiann Chen (Taipei, Taiwan)
Yaohan Chu (Maryland)
Wen Hsing Hsu (Hsinchu, Taiwan)
Jyh—Sheng Ke (Taipei, Taiwan)
C. N. Liu (New York)
Wen—Hsiang Tsai (Hsinchu, Taiwan)
Hisao Yamada (Tokyo)

EXHIBITIONS
Systems of novel design and advanced technology are
invited for exhibition. Please contact
Prof. Shi—Nine Yang
Dept of Computer Sciences
National Tsing Hua University
Hsinchu, Taiwan 30043

PROGRAM CO-CHAIRPERSONS
Prof. Yaohan Chu
University of Maryland
College Park, MD

Prof. Wen-Hsing Hsu
National Tsing—Hua University
Hsinchu, Taiwan

LOCAL ARRANGEMENT CHAIRMAN
Prof. Shi—Nine Yang
National Tsing-Hua University
Hsinchu, Taiwan

Shi-Kuo Chang (Pittsburgh, Penn)
Francis Chin (Hongkong)
Ching C. Hsieh (Taipei, Taiwan)
Jack K. T. Huang (Taipei, Taiwan)
Lin-Shan Lee (Taipei, Taiwan)
Ching Y. Suen (Montreal)
Hsiao C. Wang (Hsinchu, Taiwan)
Shi—Nine Yang (Hsinchu, Taiwan)

Philosophies for
Engineering

Computer-Based Systems

Harold W. Lawson

Lawson Publishing and Consulting, Inc.

In recent years, attention has focused
on software engineering — especial¬
ly its computer-aided aspects— as a

“cure” for the life-cycle problems of com¬
plex computer-based systems. Unfortu¬
nately, this emphasis is like placing the
cart before the horse. Software engineer¬
ing methods and tools are important, but
they should be the natural result of a well-
developed philosophy for solving the ap¬

plication problem.
By philosophy I mean a unifying com¬

mon view of how a problem or class of
problems shall “in principle” be treated.
The view, which is based on concepts,
must be commonly held by project team
members and all other parties with vested
interests. It involves the development of a
strategy from which decisions (large and
small) emanate. The philosophy should be
documented, most often via appropriate
paradigms and models, for communication
to others. Once the philosophy is under¬
stood and practiced, the decisions will
follow a common pattern. The philosophy
“way of doing business” leads to both ex¬
plicit and implicit knowledge. With a
common view, details for solving large and

A sound problem¬

relevant philosophy is

the key to achieving

successful

implementation of

complex computer-

based systems.

Software engineering

methods and tools will

naturally flow from

this foundation.

small problems will be convergent instead
of divergent, because there are no diverse
views or misunderstandings. A good com¬
mon philosophy contributes to an esprit de

0018-9162/90/1200-0052$01.00 © 1990 IEEE

corps within project teams and organiza¬
tions, motivating people to follow and

propagate the philosophy.
A dictionary definition of the word phi¬

losophy appropriately conveys several
important points made in this article:

philosophy. 1. the rational investigation of
being, knowledge, and right conduct. 2. a
system or school of thought: the philosophy
of Descartes. 3. the basic principles of a
discipline: the philosophy of law. 4. any system
of belief, values, or tenets. 5. a personal
outlook or viewpoint. 6. serenity of temper.

Source: The Collins Dictionary andThesaurus,
William Collins Sons & Co. Ltd., 1987.

Unfortunately, many projects start with¬
out a philosophy. Those who have initiated
or participated in projects guided by a clear
philosophy know exactly what I mean.
Those who have not have missed a vital
professional experience. I hope this article
will enlighten the latter group.

A philosophy comes from within the
organization, often based on stimulus from
one or a very few creative persons who are
what Brooks1 referred to as “the great de¬
signers.” (Sometimes this includes an ex-

52 COMPUTER

temal person with broad experience who
provides the starting point). Over time, the

philosophy achieves common acceptance.
In contrast, when methods and tools (in the
absence of an internal problem-relevant
philosophy) are “dictated” from outside
the project organization, project members
often resist and adjust only reluctantly.

The case of Simula

To illustrate the importance of a philos¬
ophy, let’s consider the development of
Simula. This programming language2 was

designed in the early 1960s as a result of a
philosophy for simulating industrial work
environments and social systems. Dahl,
Myhrhaug, and Nygaard, the Simula
founders, later assisted Norwegian labor
unions in gaining insight into various pro¬
duction models. They evolved concepts
they felt were important for programming
industrial work environment simulators,
including the notions of classes, sub¬
classes, objects with attributes, and inher¬
itance. These concepts became the heart of
the Simula philosophy, which lives on
among avid Simula users and is perpetuated

by the Simula User’s Group.
Dahl, Myhrhaug, and Nygaard used Al¬

gol-60 as a base (“carrier”) for their con¬
cepts. Thus, Simula was born as a further
development of Algol. At approximately
the same time, I developed the list processing
facilities of the PL/I programming lan¬
guage.3 While these facilities can be used,
via detailed programming, to accomplish
goals similar to those of Simula, the back¬
ground for their development was quite
different. In contrast to the specific prob¬
lem-related orientation of Simula, PL/I was
developed as ajoint effort of many interests.
It reflects rather pragmatic decisions by
parties with diverse interests and views.
PL/I, as a large committee effort, suffered
greatly from the lack of a commonly agreed
upon philosophy. On the other hand, the
list processing facilities (an add-on to the
original language specifications) were based
on the concepts of based and pointer vari¬
ables. These concepts have proved to be a
widely accepted philosophy in their own
right. They have been widely used in PL/I
programs4 and “carried” forward into many
PL/I dialects and subsets. Also, they pro¬
vided the backbone of the C programming
language.

Simula was based on a philosophy aimed
at solving a particular class of problems. It
was good at doing that job; however, it also

became useful for a wider class of pro¬
gramming problems. Its problem-related
philosophy-first basis led to a successful
solution. The abstract notions developed
by the Simula pioneers have finally resulted
in an emphasis on the importance of ob¬
ject-oriented design, as well as various
concrete carriers of the concepts, for ex¬
ample, the programming languages Small¬

talk, C++, Objective C, and Eiffel.

“In vogue”
philosophies

Some philosophies attract a great deal of
attention in the computing community,
becoming contemporary fads. Although it
took a long time, the Simula philosophy is
one example of an “in vogue” philosophy.
Other examples are the Unix philosophy

centered on processes and pipes, and the
philosophy related to windows and the
desktop paradigm. Both philosophies have
been implemented through a variety of
concrete carriers. In addition to the object-
oriented philosophy started by Simula, these
faddish philosophies are currently guiding
a significant portion of our view of modern
computer-based systems development.

Philosophy decay

Philosophies, once established, must be
nurtured and treated with respect; otherwise,
they deteriorate. One of the most signifi¬
cant (and costly) examples of philosophy
decay was the development of the OS/360
operating system during the early 1960s.
The first six months of project planning
resulted in a well-thought-out and neatly
documented operating system philosophy
for the new family of computers. There
was one design notebook. Then came the
marketing demands to incorporate a vari¬
ety of features, special requirements for
related project groups, pressing time
schedules, and other demands. That result¬
ed in an explosion of the project docu¬
mentation and the eventual involvement of
a cast of thousands around the globe. The
decay was rapid and significant and has
radically influenced IBM, its customers,
consultants, and many others since that
time. The OS/360 experience with philos¬
ophy decay is extreme; however, it has
been observed in many other large comput¬
er projects.

The pragmatic gap and
“feature-itis”

The period between the mid-1960s and
the mid-1980s — the “pragmatic gap” —
was a period of both great confusion and
economic opportunity in computing. It was
also a period filled with “feature-itis”; that
is, more was better. Commercial products
were filled with features that clearly re¬
flected their companies’ lack of unifying
central philosophies and the prevalence of
pragmatism.

The three philosophies that are in vogue
— object orientation, Unix, and windows
— should improve our product under¬
standing and our ability to effectively use
computer systems technology. However,
although one would hope that these phi¬

losophies would not deteriorate and suffer
from “feature-itis” as did their predeces¬
sors, there are already indications of phi¬
losophy decay. Consider, for example, the
major extensions that have been added to
Unix for process synchronization, inter¬
rupts, and priority. These extension have
led some experts to reexamine the situation
and create a new philosophy (the Mach
operating system). Another example is the
tendency towards feature-itis window sys¬
tems, such as Motif.

Philosophy versus
software engineering

Some may argue that a sound project
philosophy is a part of good software engi¬
neering design. If so, the philosophy must
be the abstract set of concepts guiding all
further developments.

In many cases, software engineering re¬
fines existing practice by reacting to con¬
crete, often pragmatic problems in the
“management” of the software life cycle.
Philosophies are based on principles, con¬
cepts, and strategies, whereas software
engineering is based on methods, mecha¬
nisms, and tools. This is not to say that the
methods, mechanisms, and tools are not
important, nor that they lack philosophy,
since they are normally built according to
philosophies. As long as the philosophies
of these methods, mechanisms, and tools
are congruent with the problem philosophy,
all is well. Unfortunately, software engi¬
neering often means solving the “imag¬
ined” (frequently pragmatic) problem and
not the actual system realization problem.

December 1990 53

Another aspect of software engineering
common to faddish computing is “hop¬
ping on the bandwagon.” Those who join
the bandwagon expect the methods and
tools to provide salvation without under¬
standing the source of their actual problems.
Overstructuring the problem caused by
some computer-aided software engineer¬
ing (CASE) methods and tools can lead to
overmanagement and overspecification.
This in turn leads to volumes of human
and/or computer-generated documentation

that nobody wants or bothers to read.
In the next four sections of this article,

I will discuss several philosophy-relevant
factors and illustrate experiences where
philosophies have played a central role in
realizing complex real-time applications.

Contextual aspects

Many factors relate to both the develop¬
ment of a philosophy and the absence of
one. They reflect principles, points of view,
and human psychology, as well as national
traditions, organizational structures, cul¬
tures, practices, and decision making.

Problem versus computer system Fix¬
ation. The first, most basic issue is the
question of fixation. While fixation is found
in all computer-based system projects, we’ll
focus on real-time systems to illustrate the
problem.

Computer systems were first widely used
in real-time applications in the mid-1970s
when the microprocessor and related
components were introduced. Many engi¬
neers who implemented real-time systems
with analog technology resisted using
computer-based solutions. In fact, some
speculated that this role of the computer
was a passing fad.

We now have a history of computer-

based, real-time system solutions. Many
computer experts solve real-time prob¬
lems, frequently without the problem-rel¬
evant insight of the engineer. Narrowly
focusing on either the problem’s engi¬
neering aspects or its computer system
solutions leads to uncertainty and commu¬
nication difficulties, thus hindering ap¬
propriate philosophy building. No group
of engineers, computer experts, or mix¬
ture thereof can develop an appropriate
philosophy by sticking to its own narrow
thinking.

We are all products of our experiences,
as broad or as narrow as they may be. The
majority of computer experts view prob-

The fixation on

computer-related artifacts
by those responsible
for computer-based

systems has hindered
proper development.

lem solutions in terms of specific artifacts
of their profession, for example,

• specific computer systems,

• languages,

• operating systems,

• shells,

• methods, and

• tools.

These artifacts become the media through
which they think about and see the problem.
They tend to “immediately” cast the problem
in terms of one or more of the artifacts. In
the real-time context, they may also see the
problem in other computer-related terms,
such as

• interrupts,

• communication,

• synchronization,

• rendezvous,

• scheduling, and

• state models.

The computer experts a priori view often
hides the real problems of developing a
sound, problem-relevant common philos¬
ophy. On the other hand, a broad knowledge
and understanding of the possibilities and
limitations of the artifacts is an important
ingredient in building a relevant project
philosophy. The essential point is not to let
dominant orthogonal artifacts limit the
problem solutions or tie the problem to
inappropriate approaches.

Natural vs. forced solutions. A phi¬
losophy that is natural for the solution of a
problem or class of problems will lead to
paradigms and models, followed by meth¬
ods, mechanisms, and tools that are consis¬
tent with the philosophy. It will clearly
lead to other appropriate computer-related

artifacts. (Three specific philosophy ex¬
amples representing this form of project
development in Europe are presented in
this article.) Following this path of setting
the horse before the cart (that is, philoso¬
phy before method and tools) leads to a
much more rational, self-perpetuating ap¬
proach to solving the life-cycle problems
of complex computer-based systems. This
fact is confirmed in a study of several
Swedish computer-based system projects.5
The study also confirms that the success of
the project can be traced to one or a few
great designers who have guided the phi¬
losophy and received full management

support.
When the problem is viewed in terms of

specific artifacts, the view brings a priori
conditions of what can and cannot be ac¬
complished. Thus, from the beginning, a
number of degrees of freedom are removed,
restricting the solution domain. In this en¬
vironment, the problem solution is often
forced into the framework of computer-
related artifacts that conflict with the natu¬
ral problem philosophy. Eventually, this
results in a variety of long-lasting and costly
practical problems, including negative at¬
titudes among the project team members.

The fixation on computer-related arti¬
facts by those responsible for computer-
based systems has hindered proper devel¬
opment. In the relationship

Problem <—> Computer System

the emphasis has been on the artifacts’
capabilities. In fact, it is the problem that is
important; thus, the artifacts should be ap¬
plied to the problem only when they are
consistent with the philosophy. When pro¬
posed methods and tools are orthogonal to
the natural solutions of the problem, new
philosophy-related methods and tools must
be developed.

To illustrate natural versus forced solu¬
tions, let’s consider a concrete example:
using Ada to develop software for prob¬
lems where the natural solution calls for
cyclic execution philosophy, as described
by Baker and Shaw.6 In their article. Baker

and Shaw illustrate that by various unnat¬
ural means, Ada — which is based on the
rendezvous synchronization philosophy—
can implement cyclic behavior. Several
examples of solving this problem are pro¬
vided, most of which add complexity and a
high degree of machine dependence (a
counter goal of Ada). Unfortunately, forced
solutions of this variety often predominate
in complex computer-based systems de¬

velopment.

54 COMPUTER

Individual and group psychology. That
computer experts view problems based on

their experience is quite natural. However,
precisely this aspect constrains the devel¬
opment of appropriate, commonly agreed
on philosophies. People react based on
anchoring and adjustment; that is, by es¬
tablishing an anchor point of view (for
example, one or more of the computer-
based artifacts) and then by making small
adjustments from this anchor point. At the
outset, the problem is viewed in terms of
artifact constraints — negative thinking —
instead of in terms of suitable problem¬
relevant solutions — creative positive

thinking.
Anchoring and adjustment also exist at

the group level, leading to the “not invent¬
ed here” syndrome that prohibits positive
development. Other group-related con¬
straints, based on human interaction, in¬
clude ego, personality clashes, previous
education and training, prejudices, cus¬

toms, and tradition.
When a common philosophy comes into

existence, the group generally feels a lift
and starts to attack problems with new
enthusiasm. At the point the philosophy
develops, they may not even know what is
happening. The evolution of the philoso¬
phy may come during implementation, when
group members gain insight through the
programming process, as cited by Peter

Naur.7
“All the world loves a winner” is another

important psychological aspect of the situ¬
ation. Often we are so fixed on succeeding
that we do not learn from our failures. The
fear of failure also drives projects into
conservative, uncreative thinking. Wurman8
regards the fear of failure as a general
societal problem in which success is re¬
warded and failure is punished. Great de¬
signers in all fields have experienced suc¬
cesses and failures; most importantly, they
have also learned to understand the posi¬
tive aspects of failure.

Management, formalism, and creativ¬
ity. After reviewing the international liter-
ature ih software engineering, Lennarts-
son5 reports three major areas of emphasis
in complex software projects.

First is the emphasis on project manage¬
ment as the key to success. At the outset,
the problem and potential artifacts are
viewed as complicated, so a project man¬
agement staff is established to deal with the
complexity. In this environment, new arti¬
facts (for example, CASE tools) are re¬
quired to manage the selected artifacts,
thus compounding complexity. This is called

Employers get what
they ask for: artifact-

bound employees who
may or may not be able

to solve the real
problems.

the management of complexity approach.
Others emphasize formalisms: that is,

using linguistic notations and their seman¬
tics to, in a “Descartian spirit,” specify and
prove the correctness of a system. This
altruistic view of seeing problems through

a formal artifact has not resulted in widely
accepted practice. On the other hand, for¬
malisms that are well understood by the
group and provide a good means of com¬
municating a philosophy are extremely
important. The reality related to notations
and languages has been elegantly noted in
Compiler Construction: An Advanced
Course (Springer Verlag, 1976):

The uni verse and its reflection in the ideas of
man have wonderfully complex structures.
Our ability to comprehend this complexity
and perceive an underlying simplicity is
intimately bound with our ability to symbol¬
ize and communicate our experience. The
scientist has been free to extend and invent
new languages whenever old forms became
unwieldy or inadequate to express his ideas.
His readers, however, have faced the double
task of learning his new language and the
structures he described. There has, there¬
fore, arisen a natural control: a work of
elaborate linguistic inventiveness and mea¬
ger results will not be widely read.

— William McKeeman

The final area of emphasis is creativity.
Project success depends on supporting the
creative, visionary people who can estab¬
lish, communicate, and perpetuate the phi¬
losophy. The management must trust these
creative people by providing them with
authority as well as responsibility. This
emphasis is the management of creativity

approach.
The key to success is not based on only

one of these approaches. In fact, each ap¬
proach is relevant. However, it is impor¬
tant to begin with the creative aspects (that

is, philosophy building) and then move
into the other areas. In fact, a sound philos¬
ophy naturally provides appropriate views
of formalisms and management structures.

Cultural differences. The societies in
which computer-based systems are devel¬
oped and used also play an important role
in determining whether the development
of a philosophy is considered important or
is even considered at all. This can be affected
by national traditions, the economic system,
political views, education and training,
views of marketing and supporting products,
legal aspects, and other factors.

For example, Halang9 indicated that

Europeans use more higher-level artifacts
— particularly higher-level languages —
when implementing real-time systems. In
contrast, Americans still have a highly
pragmatic attitude, despite the fact that the
largest, most complex real-time applications
are designed and sometimes realized there,

particularly in space and military systems.
Americans often solve problems as quick¬
ly as possible with the artifacts available,
even though documentation, system con¬

sistency, and other areas suffer. Halang
points to traditions in European industry as
a reason for this supremacy. Having lived,
been educated, and worked for over 30
years in the USA and almost 20 years in
Europe, I can confirm this difference of
attitude, despite some notable counter ex¬
amples on both sides of the Atlantic. This
article’s three examples of philosophies
for real-time projects are all taken from
European experiences.

We can observe cultural differences in
project management, the use of formalism
and creativity approaches, as described
above. The management emphasis is pre¬
dominant in North America, while the for¬
malism emphasis is found in a few Europe¬
an projects. The creativity emphasis can be
found in isolated cases all around the world;
however, in the Swedish cases studied by
Lennartsson,5 the management of creativ¬
ity was the dominant area of project em¬
phasis.

Organizational aspects. The organiza¬
tional environment plays a significant role
in the development and/or use of comput¬
er-based systems. In the real-time area, the
system may be developed to solve the
specific problems of business operation,
for example, power regulation and distri¬
bution by a power supplier or automatic
train control by a national railway. The
organization installing such systems invests
in design, development, operation, and

December 1990 55

maintenance. The project may be totally
in-house or subcontracted to other suppli¬
ers. However, it is vital that philosophy
development either stays in-house or
transfers with the product into the quali¬
fied end user’s organization.

Let’s now consider corporations that
supply computer-based systems to both
specific and general marketplaces. The
product philosophy they develop must be
viewed by and guide all parties with a
vested interest in the product, namely, the
development team, the management, the
marketing organization, and the end users.
The philosophy becomes the keystone of
communication about the product.

It is also important to observe how com¬
puter-based projects are staffed, specifi¬
cally, the qualifications of the people in¬
volved. A review of the classified
advertisement sections of daily newspapers
and professional publications indicates the
predominance of artifact-related personnel
advertisements. People are sought for their
knowledge and skills in relationship to

specific artifacts. While it does occasion¬
ally happen, there are too few advertise¬
ments specifically seeking people who can
solve a problem or class of problems.
Employers get what they ask for: artifact-
bound employees who may or may not be
able to solve the real problems.

A vital ingredient to successful projects
is a stable work force. Here philosophy and
esprit de corps can play a dominant role.
The best methods and tools of software
engineering will not contribute much if the
work force is unstable. In this fluid envi¬
ronment of project personnel, the devel¬
opments often degrade to highly pragmatic
ad hoc solutions with all the long-term
consequences that are implied. A sound
explicit philosophy will encourage project
members to stay with the project and insure
that others can take over without major
project perturbations when departures oc¬
cur. Cultural differences as well as business
operations and practices naturally influence
work force stability. In the US, which has
a highly volatile market for qualified
computer professionals and engineers, this
aspect has influenced many important
projects, undoubtedly contributing to in¬
complete and/or unsatisfactory problem
solutions. In Europe and Japan, project
groups tend to be more stable.

In the following sections, we’ll consider
three concrete examples of how philosophy
development has played a key role in suc¬
cessfully implementing real-time systems.
The goal is not to be complete in any sense;
however, I provide the problems to be

Figure 1. Blocks and signals.

solved, the main concepts and ideas related
to each project philosophy, and the impact
of the philosophy on further project de¬

velopments and related parties.

The Ericsson
telecommunications
experience

The public telecommunications division
of the LM Ericsson corporation, based in
Stockholm, has a long history as a supplier
of telephone and telecommunication
equipment to both the Swedish PTT
(Televerket) and the rest of the world.
Today, Ericsson telephone switching
equipment is installed in more than 70
countries worldwide. It is the world market
that provides Ericsson with an economic
basis for the advanced research and prod¬
uct development required for leadership in
the telecommunication industry.

In the late 1960s, the company decided
to move into the era of digital stored-pro-
gram-control (SPC) switching equipment.
Since its market was diverse, with much
local adaptation required for its products
and with stable long-term solutions needed
(20- to 40-year product life time), Ericsson
sought to develop an appropriate philoso¬
phy for its SPC exchange products.

The designers had an appreciation of
computer technology but no long-term
experience with it. (They were very familiar
with conventional relay techniques.) This
lack of deep attachment to computer arti¬
facts probably was an important advantage.
Instead of viewing the problem through the
limitations of specific commercially
available computer artifacts, they attacked
the problem from the points of view of both
their experience and the market require¬
ments.

The design effort led to the concepts of

blocks and signals as abstract objects that
represented the fundamental components
of the switching equipment. The concepts
were a direct extension of the designers’
experience with the previous analog sys¬
tems. The two concepts originated during
the development of the first Ericsson SPC
product called AKE. These concepts were
later formalized — that is, given proper
semantics — and propagated to the very
successful AXE switching systerh philos¬
ophy. Figure 1 illustrates these concepts.

There is a strict difference between
programs and data. The data of a bWk is
only accessible from within the block, thus
providing security and protection. The
signals range from simple signals to mes¬
sages that are transferred between function
blocks.

Unfortunately, very little has been pub¬
lished concerning the Ericsson philosophy
of stored program control exchanges.
However, Jacobson10 reports in his thesis
the following rationale for the block and
signal philosophy:

(1) Blocks are manageable units for the design,
production, installation, operation, main¬
tenance, etc. of large systems. This is a soft¬
ware engineering aspect of blocks, making
possible the division of work on a large system
into parts that can be planned, worked, tested,
produced,... separately and then integrated as
a system.

(2) Blocks are units of encapsulation. The
only means of accessing the internals of a
block is through a strictly standardized signal
protocol. From outside the block only the
signal protocol is visible, the internal structure
and implementation being hidden to the user
of the block.

(3) Signals offer dynamic interconnection of
blocks. For instance a given block A can be
interconnected to many different other blocks,
but in a given situation the receiver block B is
dynamically known to A as a data object.
When A sends a signal to B, the actions taken
is decided solely by the receiver block B, and
the sender block A specifies not more than the
signal name and the data object referring to B.

(4) Blocks can be implemented using different
techniques for different blocks, such as
different programming languages, different
computers or computer systems, different
hardware techniques, and so forth. Block
decomposition therefore supports adaptation
to new technology without redesign (or with
limited redesign).

Blocks and signals are the components
that the designers of particular installa¬
tions work with. Since many functions are
common, libraries of blocks are developed
and reused or modified as needed. New
technical telecommunication employees are

56 COMPUTER

indoctrinated into this natural Ericsson SPC
philosophy and way of doing business.

As stated in point (4) above, an impor¬
tant aspect of the project was the separation
of logical function from physical imple¬
mentation, that is, philosophy from carrier.
The original designers had the foresight to
keep these notions clear. Thus, blocks and
signals can be implemented via hardware,
software, or combined components. Fur¬
ther, as new hardware becomes available,
it can be incorporated into AXE systems by
implementing the block and signal philos¬
ophy. In the first AKE realization, block
and signal concepts were implemented via
assembly language macros. The AKE
project provided important positive and
negative learning experiences. For the first
version of AXE, a special-purpose CPU
was developed to conveniently map the
more formal version of the block and signal
concepts to a programmed control comput¬
er. Further, the block and signal concepts
were embedded into a special-purpose pro¬
gramming language for the processor called
PLEX. The general structure of this archi¬
tecture is illustrated in Figure 2.

The architecture is composed of a micro¬
programmed CPU and three separate stor¬
ages. Each block has a unique block num¬
ber, reflected in the block number register.
This register points to the reference store
where the start address of the block program
code in the program store and a base address
table for referencing the data store are
found. The instruction register is used to
sequence instruction execution within the
block program code in a conventional
manner. Further, a pointer register is used

to reach individual data in a variable. Thus,
the architecture as well as the tools (that is,
artifacts) used to realize the SPC philoso¬
phy were a natural follow-on development

from the basic philosophy.
Each, AXE exchange contains one cen¬

tral and several regional processors. Blocks
are the basic program units for both proces¬
sor categories. One example of the conse¬
quence of a consistent philosophy is the
question/of call synchronization. Blocks

operating in the regional processors cannot
signal each other directly; they must use
the central processor, which manages the
synchronization. The block and signal phi¬
losophy permitted this architectural prop¬
erty to be conveniently implemented and
controlled by software tools. In fact, a host
of design support tools were developed,
including PLEX, with related software
engineering support for the life-cycle man¬
agement of the SPC products.

Development of AXE transpired at El-

Figure 2. CPU architecture for the
AXE system.

lemtel, a research and development corpo¬
ration jointly owned and operated by
Ericsson and the Swedish PTT (Televerket).
There were a few key people who created
and perpetuated the block- and signal-based
philosophy; namely, Bengt-Gunnar Mag-
nusson (AXE general hardware architec¬
ture), Ivar Jacobson (AKE software archi¬
tecture), and Goran Hemdal (AXE software
architecture). As with many pioneering
efforts, the proposed project philosophy
was first viewed with skepticism. Eventu¬
ally, full support was given and the AXE
product was successfully developed at El-
lemtel. The management of creativity ap¬
proach proved to be a key to success.

The philosophy of AXE has affected all
aspects of the Ericsson telecommunication
division activities. Fromthe marketing point
of view, it has been the basis for convinc¬
ing customers that Ericsson indeed has a
long-range approach to developing and
supporting switching equipment. The sep¬
aration of logical design from physical
implementation permits the system to be

modernized during the long life cycle. This
represents a major advance over the older,
more conventional relay technology. One
highly successful adaptation was the in¬
corporation of cellular mobile radio com¬
munications into AXE exchanges. This
adaptation opened a new, rapidly expand¬
ing market for both Ericsson technologies.

The AXE philosophy has led to an esprit
de corps in the company. More than 3,000
Ericsson employees are actively involved
in developing and supporting AXE
switching products worldwide. Finally,
AXE has provided the Swedish PTT with a
state-of-the-art product that enables Swe¬

den to be a world leader in advanced tele¬
communication equipment. Sweden, in
particular, and the Nordic countries, in
general, have the highest ratio of tele¬
phones, computer terminals, and mobile
telephones per capita in the world.

A counter example. On the other side
of the Atlantic, during the mid-1960s, Bell
Telephone Laboratories at Indian Hill, Il¬
linois, actively pursued the same goal of
developing stored program control
switching systems. In contrast to the
Ericsson approach, the designers started
by accepting the use of an IBM 7090 series
computer (that is, an artifact). Further, as
the design developed, it was implemented
in the computers’ assembly language (that
is, another artifact). The implementors’
primary view of the switching system be¬
came the assembly language code. The
result, as one would expect, was a prime
example of spaghetti code, and the approach
was eventually abandoned. It did, on the
other hand, serve as a costly but useful
learning experience for Bell Telephone
Laboratories.

I have been a consultant in several
computer-based projects for both qualified

end users and suppliers in which my major
role has been to assist in developing ap¬
propriate philosophies. In the following
sections, we’ll consider two of these
projects. Generally speaking, consultants

are called when problems (frequently se¬
vere) have been encountered. The consultant
is then viewed as the fireman engaged to
put out the fire. The philosophy-lacking
project is often well established, making it
difficult to create quick fixes. It is better to
back out, understand the mistakes, take a
good long look at the problem, retrench,
and build up the philosophy. The first project
(Automatic Train Control) was of this na¬
ture. The second project (High Voltage
Power Dispatching) was accomplished
through a philosophy-first approach. There
I participated in the project from the start.
A very competent colleague, Miguel Ber-
tran, and I developed a philosophy that
guided the successive stages of system
development.

Automatic Train
Control

The Swedish National Railways in the
mid-1970s decided to implement a control
system to help train engineers follow speed

December 1990 57

(Antenna^

// (Panel) | Statens Jarnvagar

(Computer system)

(Sensors and actuators)

Figure 3. Major “components” of the ATC system.

Sensors

Majority logic

TTTT

Figure 4. View of the ATC o
computer system.

limits along the railway system. The Auto¬
matic Train Control (ATC) system con¬
tains two parts, one for telecommunication
and one for the operator. The telecommu¬
nication part involves radio transmission
from transponders located periodically on
the tracks to the locomotive. Read-only
information concerning speed limits, po¬
sition, distance to next transponder, and so
forth is transmitted to the train as it ap¬
proaches the transponder. The computer

control and operator part of ATC, located
in the locomotives, monitors and controls
the train and communicates with the train

engineer(s). It is a “watchdog” system that
advises the engineer and only stops the
train or reduces its speed when the engineer
fails to do so. Figure 3 shows the major
components of the ATC system.

The contract for the telecommunication
part was awarded to the Ericsson corpora¬
tion, and the computer control and opera¬
tor part was awarded to Standard Radio
and Telefon (at that point owned by the
ITT Corporation). Both corporations operate
in Stockholm. I consulted for the computer
control part. An implementation philoso¬
phy led to an operating solution that clearly

placed the development “on track.”
A highly competent engineer at Standard

Radio had been in charge of the project
about one year when I arrived. The engineer
had developed a significant amount of as¬
sembly code for a PDP 15 computer that
simulated the ATC system. He started
writing code at an early stage, even before
the functionality of the system was clear.
While he was a very clever programmer,
the solution was unmanageable and was
rapidly moving toward spaghetti code.
Fortunately, he recognized this fact himself
and was quite cooperative in working with
me to retrench and develop an appropriate
philosophy.

The on-board system is composed of
triplicated microprocessors surrounded by
sensors and actuators, as well as operator
communication. All three systems perform
identical processing. Calculated results are
checked by majority logic before they are
delivered as system outputs. A simplified
view of the computer system is shown in
Figure 4.

After studying the problem, the envi¬
ronment in which development and testing
would take place, and the problems for
future updating and maintenance, I sug¬
gested a philosophy for implementing the
real-time operating system that corre¬
sponded quite closely to the nature of the
problem, including the use of limited-ca¬

pacity microprocessors. The philosophy
was based on the requirement for a con¬
tinuous system with relatively few required
processes. This led to the idea of viewing
the system as continuous, cyclic, precise¬
ly-timed loops.

The original proposal divided a major
execution cycle of 250 milliseconds into
five time frames: A,B,C,D, and E. During
A, C, and E, decoding transponder infor¬
mation transpired; whereas, B and D were
dedicated to the primary processing, in¬
cluding speed and distance calculation,
brake pressure updating, speed limit button
handler, speed limit scheduler, stop check,
presignal braking, prebraking and decel¬
eration supervision, speed supervision, and
output calculations. This original proposal
was further simplified by treating all pro¬
cesses as members of a single 250-milli-
second cycle. The predicates that determine
if the process is relevant during the current
cycle are tested by a guard at the head of the
process. A full cycle will always complete
in a maximum of 250 milliseconds. If it

finishes ahead, it will wait for a clocked
signal to start the next cycle.

With this simple structure, many aspects
of the project became quite clear. Some
central aspects that evolved Were

• A simple loop of procedure calls pro¬
vided the backbone of control.

• The program assembly code'was struc¬
tured around the simplified process
notion and control structure.

• Sufficient basic loop performance re¬
duced the need for immediately han¬

dling hard interrupts.
• Interprocess communication was ac¬

complished by shared process variables

where the producer was executed be¬
fore the consumer(s) in the loop.

• The system was deadlock free.

The proposed philosophy was gratefully
accepted, and development was restarted
with very positive results. I proposed plans
based on the philosophy for production
control, testing, verification, updating, and
maintenance of the system. Several tools
were suggested that would produce code in
a readable manner and permit consistent,
automatic checks by parsing the assembly
language source text. The philosophy led
to intuitive and consistent solutions to
problems that arose during project imple¬
mentation.

The net result was that the Swedish
National Railways received a highly reli¬
able, efficient, and maintainable system.
The system has been installed in over 1,400
locomotives in Sweden. Variations of the
system have been exported to other coun¬
tries, and, according to Standard Radio and
Telefon management, the system has be¬
come a showcase for implementing auto¬
matic real-time control systems for trains.

Many are extremely surprised that the
system only requires 8K of memory. At
that time, and even today, the low memory

58 COMPUTER

Monitor network Network event

Figure 5. Monitors and application processes of the Power Dispatching System.

volume contributed to lower hardware pro¬
duction costs and a small physical struc¬
ture. A new generation of the product is
currently under development where the
memory requirements will be extended to
16K, very modest in these days of megabytes
of software complexity.

The same ATC philosophy is being used

for planning control of high-speed traffic
trains (up to 300 kilometers per hour) that
will be installed during the 1990s in Swe¬
den. The philosophy is viable and lives on.

ENHER: Power
Dispatching

The final project involved the qualified
end-user development of the central system
for a high-voltage power dispatching cen¬
ter at the ENHER (E.N. Hydro Electrica
del Ribagorzana) power company in Bar¬
celona. The name given to the project was
Conce (Control Central). In contrast to the
short period of time I was involved in
helping Standard Radio (one year), the
work with ENHER proceeded over six years
(1974-1980). I had the pleasure of working
with Miguel Bertran, a former graduate
student and then project leader at ENHER.
Together, we developed a philosophy for
the implementation of the central control
that naturally led to developing and using a
variety of appropriate software engineering

methods and tools.
After examining the existing commer¬

cially supplied ^sterns for high-voltage
power dispatching, the management at
ENHER decided to build their own system.
Their motivation was cost; the purchase,
installation, training, operation, and
maintenance requirements for any com¬
mercially supplied systems would involve
substantial investments. At the same time,
only a limited competence in respect to any

purchased system would exist in-house.
The management believed that it would be
better off with a system for which detailed
competence existed in its own organization
(that is, by being a qualified end user). This
situation provided a strong motivation for
developing a philosophy that would touch

many related parties.
When we started the Conce project,

several papers appeared concerning mon¬
itors, which are quite important in solving
problems such as readers/writers, controlled
access, resource allocation, communication,
and monitoring. These papers influenced
our thinking in developing the central

philosophy. Even though we knew that, for
practical reasons, the system would be
implemented in Fortran with a manufac¬

turer-supplied operating system (artifacts)
and hardware, we concentrated on devel¬
oping a philosophy that matched the real
problem. Thus, we built the philosophy

around processes and monitors, as shown
in Figure 5. The monitors provided orderly
system access to important resources, such
as the network, the operators, the power
grid information stored in central matrices,
and the structured use of application pro¬
cesses.

The monitor and process philosophy led
to some extremely important properties for
the further development of the system;

We could start developing monitors
and subsets of the application processes

and test the framework in partial form.
The monitors provided a useful clear¬
inghouse for instrumenting the system
testing, statistics gathering, and per¬
formance analysis.
The philosophy led to simulating par¬
tial versions of the system, resulting in
gained insight and experience.

• We could successively add details and
gain further insight by stepwise re¬
finement.

• System development became a pro¬
cess of implementing successively
complex simulators (models) where
the final simulated version became the
real system.

• The system’s logical structure could
be used in requesting equipment and
system software with related price in¬
formation from computer manufactur¬
er suppliers (request for price quota¬
tion, or RPQ).

After we gained insight and experience
with the project, we developed a configu¬
ration specification reflecting project needs
and supporting the philosophy. The logical
configuration is shown in Figure 6.

The logical system structure includes
three CPUs; the primary role of each of the
three computers (operation, hot standby,
and development) is shown in the figure.
However, since the memory is shared and
all other system connections are controlled
by program-changeable switches, the three
roles are interchangeable. One computer
always runs the system, at least one (possi-

December 1990 59

Figure 6. Logical configuration of the Power Dispatching System.

bly two) is in hot standby, and one (when
needed) is used for development. Because
the development system also has read-only
access to the real power network informa¬
tion, simulated new versions of the system
could be made before switching them into
operation.

This logical system specification was
supplied to six potential suppliers with a
request that they respond to the concrete
system details for the logical configura¬
tion. This RPQ approach surprised most of
the sales people because it was not standard
practice. While responses left quite a bit to
be desired, the information received could
be evaluated in a structured manner. After
evaluating the technical and practical
matters, we selected an Interdata system.

A degree of orthogonality naturally ex¬
isted between our philosophy and the
manufacturer-supplied hardware and sys¬
tem software; however, we resolved these
differences. The monitor approach provided
a natural means of extending the philoso¬
phy to the shared resources of the computer
system. In addition to the monitor structure
we had worked with earlier (Figure 5), we
developed monitors for the remaining re¬
sources in the physical configuration.

As a result of the philosophy, we selected
some existing congenial methods and tools

and developed others that were appropriate
for the philosophy. To provide clear,
communicable documentation of procedural
programs, we used the dimensional flow¬
charting (DF) technique developed by
Witty.11 This technique was a valuable
method for documenting and communi¬
cating program logic.

A further development lifted the ab¬

straction level of describing certain appli¬
cation processes, in particular, the operator
communication and the power grid data¬

base. We developed syntax-directed
methods for these activities. We constructed
a tool for recursive descent parsing and for
generating Fortran programs from TBNF
(a modified BNF grammar) syntactical de¬
scriptions. The tool, called translator basic
(T-Basic), provided formalisms for both
semantic and syntactic descriptions. From
this tool, many nontrivial application pro¬
cesses were automatically generated into
Fortran source code. T-Basic was also used
to produce source program filters that
generate corresponding DF representations.
Further, the DF graphical form also was an
excellent way to structure and communicate
the grammar to group members.

The project team grew successively from
1975 to 1980. When each new project
member joined the group, the philosophy
was made clear both abstractly and con¬
cretely. The DFs and syntax descriptions
provided a straightforward manner to ac¬
quaint new members with the philosophy
and important system functions. A PC-
based real-time simulator driven by DF
descriptions was developed and was used
to estimate the timing impact of additions
to the existing system.

The Conce project development pro¬
ceeded in this general order: philosophy
building, logical structure, methods and
tools, preliminary simulation, equipment
specification and purchase, implementation
by successively complex simulators, and,
finally, installation. This succession is an
appropriate model for a wide class of
qualified end user-developed computer-

based systems. A few papers were pub¬
lished during the project that reflect the
project philosophy, for example, Bertran
and Xampeny’s summary paper.12

Improving
communication and
understanding

The major thrust of this article has been
to emphasize the importance of developing
project-relevant philosophies to guide
successful computer-based projects. The
bottom line is that the philosophy makes
major contributions to human-to-human

communication about the computer-based
system. It improves the understanding of a
wide range of parties with vested interests
in the project. Thus, a philosophy improves
all aspects of the products’ life cycle and, as
shown in this article, leads to successfully
implemented projects.

Common denominators; blocks,
classes, processes, and objects. If we ex¬
amine the three projects ami the Simula
experience, a set of related concepts appears:
structuring around blocks! classes, pro¬
cesses, and objects. In practice, a detailed
semantic definition of these Concepts, while
useful, is not as essential as a common
understanding of the principles. Ivar Ja¬
cobson, one of the early contributors to the
Ericsson Telecommunications AXE phi¬
losophy, has further refined the philosophy
and is now actively involved in spreading a
modern version under the name Objectory.
This represents a major break from the
CASE approach of marketing artifacts. Ja¬
cobson quite correctly believes that the
philosophy is the most important aspect
and that the artifacts, including programming
language and design support tools, are im¬
portant but secondary consequences of the
philosophy.

Object-oriented design (OOD) is now in
vogue, although the ideas and their imple¬
mentation have existed for quite some time.
The use of object as an abstract unit moves
us closer to the real objects of the problem
to be solved. OOD concepts, in one form or
another, will greatly influence computer-
based system development in the 1990s.

Representation versus philosophy.
Compared to a sound philosophy, how much
do linguistic or graphic representations of a
problem contribute to communication and
understanding? This question is, of course.

60 COMPUTER

virtually impossible to answer quantita¬
tively. I assert that philosophy is the major
contributor and that linguistic and graphic
representations play important but second¬
ary, supporting roles.

Many are lured into thinking that com¬
mon languages for specification, design,
or implementation are the key to improv¬
ing communication and understanding. This
is particularly prevalent among those who
practice the management of complexity
approach. Naturally, common languages
contribute to communication possibilities,

but it is still the philosophy that is of
primary importance. The representation is
an important but secondary matter. In Ada,
for example, the philosophy aspects of
packages, generic procedures, and ren¬
dezvous provide more understanding than
the concrete aspects of representing pro¬

grams.

Requirement analysis, specifications,
and prototyping. In all projects, the re¬
sultant product must match users’ needs
and wishds. Naturally, clear requirements
statements and specifications are vital to a
common jinderstanding between users and
implemeijtors. However, an overemphasis
on these trwo issues can be symptomatic of
the management of complexity approach.
A sound philosophy supports and expedites
requirements analysis and specification. If
a problem-relevant philosophy does not
exist for the project from the start, it should
be developed as soon as possible since it
guides all further activities. After estab¬
lishment, the philosophy must be nurtured
and propagated.

Exploring plausible approaches to de¬
veloping computer-based system applica¬
tions can be expedited through prototyping.
The area of rapid prototyping is receiving
considerable attention. While it can provide

insight, it only provides models of some
required behaviors and technical aspects
of the project. Thus, a prototype is not
necessarily a complete or sufficient basis
for assuring successful implementation.
Further, much of the current work on pro¬
totyping is based on developing special-
purpose languages for prototype construc¬
tion and analysis. The prototyping language
requires further knowledge and under¬
standing, with all of the project costs and
complexities that are implied. The final
product is typically developed using a
different programming language repre¬
sentation, even though there are some
prototyping languages that permit automatic
or semiautomatic translation to common
implementation languages.

Figure 7. Source program filter exam¬

ples.

A proven alternative to rapid prototyp¬
ing is staged partial development, also re¬
ferred to as incremental development. By
this I mean an initial superstructure designed
and constructed in the implementation
language. The first version provides criti¬
cal central functions. In the first version,
however, application functions are ex¬
cluded. Most importantly, the superstruc¬
ture is “instrumented” with information
gathering and analysis facilities. The su¬
perstructure is simulated and evaluated. In
stages, new service functions and applica¬
tion functions are added and simulated.
Within the framework, new requirements
are added along the way. The project con¬
verges towards a suitable solution with
continual feedback and adaptation after
each stage. Continual, simulated user in¬
terface evaluation is an essential part of the
staged development process. When all
desired functions are implemented, a ver¬
sion of the system that bypasses the in¬
strumentation facilities is generated. The
final simulated version is the real version.
The instrumented version, however, is vi¬

tal for continued development, evaluation,
and maintenance.

The development process I have de¬
scribed is exactly the sequence of events
used in developing the Fortran-based real¬
time system for power control at ENHER.
The philosophy based on monitors and
application processes provided an excellent
starting point for successively developing
and evaluating simulated versions leading
to the installation and operation.

Unified set of problem-relevant meth¬
ods, mechanisms, and tools. The three
examples cited in this article illustrate how
software engineering methods, mecha¬
nisms, and tools evolve as a consequence
of the philosophy, not as the driving factor
determining system development. This
evolution leads to sets of unified, highly
congruent methods, mechanisms, and tools
that provide many practical and economic
advantages, especially in communication
and understanding. The report5 on other
Swedish projects confirms the success of
this approach. Further, Lennartsson points
out that locally developed supporting arti¬
facts have not involved major development

To illustrate a few inexpensive tools,
let’s consider verifying that source programs
abide by both style and problem domain¬
relevant design rules. Parser generators are
one of the best known and developed pro¬
gram automation tools available. It is a
straightforward matter to produce filters
that verify various aspects of source texts
before their assembly or compilation. Con¬
sider the two parsers illustrated in Figure 7.

The style filter assures that general project
programming conventions are followed.
These conventions come from within the
project group and reflect both their current
needs and the needs of future viewers of
the source programs. For example, the style
filter can include examining the structure
and contents of comments, examining the
naming of variables, procedure names,
indentation conventions, and so forth in
the module of code to be assembled or
compiled.

The problem domain filter, for example,
can verify that the program module uses
variables in a consistent manner (for ex¬
ample, read, write, read/write, execute ca¬
pabilities). The identification of problem
domain objects is entered into the parser as
a vocabulary. These simple, inexpensive
tools catch a large number of potential
mistakes and achieve a reasonably high
degree of verification.

The suite of methods and tools typically
includes specific project tools (designed
and normally implemented as a part of the
project), as well as tools supplied by
manufacturers or software vendors. External
tool selection must be based on the degree
of consistency with the project philosophy
and on the education and training required
for their use and continued support.

Reduction of documentation re¬
quirements. A sound philosophy which
has driven large and small project decisions

December 1990 61

and continues as an integral part of the
philosophy reduces documentation re¬
quirements. This avoids voluminous de¬
tails placed in folders or retained in large
files that are rarely read and costly to
maintain.

Moving the artifacts closer to the
problem. I have exemplified the use of
philosophies in computer technology and
the practice of computer-based application
realization. The philosophies contribute to
a general improvement; however, there still
remains a dichotomy between the nature of
the problems and the artifacts. Even though

blocks, classes, processes, and objects pro¬
vide useful abstractions of the real system
objects, they are most often concretely
realized by procedural code. Thus, in the
end, we are required to program as well as
to communicate the details of the solution
in a procedural programming language.
Object orientation has moved us closer to
the nature of the problem; however, it is
important that we continue to explore ways
to come even closer.

For example, in the real-time domain,
we could consider using differential calculus
to characterize the behavior of continuous
time segments and using logic to charac¬
terize discontinuities. This would be a
natural way of viewing real-time phenom¬
ena. Eventually I hope we will move into
an era where concrete procedural pro¬
gramming as we know it today can largely
be avoided, even for complex real-time
applications. Then, the fundamental phys¬
ical problems (typically analog) can be
expressed in terms of relevant mathemat¬
ical and physical properties. These are the
goals of a Swedish effort investigating a
new approach for building upon the prin¬
ciples of functional- and logic-based lan¬
guages, temporal logic, and a holistic view
of hardware and software architectures.
The goal is to move the entire set of artifacts
used in real-time system projects closer to
the problems.

Design for understandability. Under-
standability is introduced here as a proper¬
ty of design in the same sense “testability”
is used in relationship to “design for test¬
ability.” As mentioned several times, a
clear problem-relevant philosophy leads to
improved understanding. However, every¬
one who adds value to a computer-based
product must design for understandability.
Design for testability is an important area
for integrated circuit design. To be test¬
able, a design must be understandable.
However, as we have considered in this

article, understandability is a much deeper
issue for all life-cycle aspects of computer-
based products.

Understandability is relevant only to the
receiver of information. People interpret

and understand new information in terms
of what they already understand.8 Thus, one
single, universal means of communicating
the structure and implementation of com¬
puter-based systems will always be an illu¬
sion. Various informal and complementa¬
ry formal descriptions are required to instill
understanding for various receivers. This
dual approach can be quite useful. The
formal description, however, must be un¬

derstandable by the receiver; otherwise,
the natural control noted by McKeeman,
cited earlier in this article, will take effect:

There has therefore arisen, a natural control:
a work of elaborate linguistic inventiveness
and meager results will not be widely read.

The understandability of computer-
related products, in general, and
computer-based products, in par¬

ticular, will become an issue of increasing
importance in the future. This is true for
reasons of safety, accountability, responsi¬
bility, and legal liability forproducts. Since
complex computer-based systems contin¬
ue to explicitly and implicitly penetrate
our daily activities in increasing variety, I
believe that the world will not continue to
accept the prevailing buyer beware attitude
shown by the hardware and software pro¬
ducers and suppliers. ■

Acknowledgments

I would like to acknowledge and thank all
colleagues who over the years I have had the
pleasure of working with to develop philosophies
for computer-based systems. With regard to the
personal real-time system experiences cited in
this article, in particular, I thank Sivert Wallin,
Berit Bryntse, and Roger Andersson for their
cooperation and support in developing the phi¬
losophy used in the Automatic Train Control
system. Sivert Wallin reviewed this article and
provided an up-to-date status of the project. On
the ENHER high voltage power dispatching
control system, I express appreciation to Miguel
Bertran, who made the philosophy become a
reality at ENHER. I also thank the project
manager, J. Xampeny, who patiently listened,
understood, and supported the development of
the philosophy.

For reviewing the paper and presentation of
the AXE philosophy. I’d like to thank Ivar Ja¬
cobson, formerly of Ericsson and now at Objective
Systems AB, Stockholm, and Bengt-Gunnar
Magnusson, who established the hardware ar¬
chitectural model and led the project develop¬
ment at Ellemtel.

Gunnar Carlstedt and Erik Tengvald of Carl-
stedt Elektronik AB, Goteborg, provided con¬
structive comments on this article and have been
instrumental in showing the way toward a fu¬
turistic real-time system philosophy. Tengvald
of Carlstedt Elektronik AB and Erik Sandewall
of Linkiping University provided insight into
futuristic philosophies for real-time systems.
Bengt Lennartsson of Linkoping University re¬
viewed the work and contrasted it with his own
study of similar projects in Swedish industrial
environments. Christer Scheja and Peter Hans-
son at Tour och Andersson Industri Automation
AB, Malmo, have stimulated my interest in
producing this article. I thank Ingemar Carlsson
and Ingvar Akersten of the Swedish Defense
Material Administration (FMV), as well as In¬
gemar Ogren, consultant, for their encourage¬
ment and reviews of this material.

Finally, I thank the referees for their con¬
structive criticism of the contents of this article
and for their encouragement to present the ar¬
guments concerning philosophy to the wider
range of computer-based systems with real-time
systems used a subset for concrete illustration.

This work has been partially supported by
Tour och Andersson Industri Automation AB
(TAIAB) in Malmo and by the Swedish Defense
Material Administration (FMV), Stockholm.

References

1. F.P. Brooks, “No Silver Bullet: Essence and
Accidents of Software Engineering,” Com¬
puter, Vol. 20, No. 4, April 1987/pp. 10-18.

2. O.J. Dahl, B. Myhrhang, and K. Nygaard,
Simula 67 Common Base Language, Norsk
Regnesentral, Oslo, Norway, 1968.

3. H. W. Lawson, “PL/I List Processing,”
Comm. ACM, Vol. 10, No. 6, June 1967, pp.
358-367.

4. G. Radin, “The Early History and Charac¬
teristics of PL/I,” Proc. History of Pro¬
gramming Languages Conf. (ed. Wexelb-
latt), SIGPlan Notices, Vol. 13, No. 13,
August 1978.

5. B. Lennartsson, Systemkonstruktion i
programvara - n&gra svenska exempel
(Software Systems Design - Experiences from
Projects in Swedish Industry),
Mekanforbundet, November 1988 (in
Swedish).

6. T.P. Baker, and A. Shaw, “The Cyclic Exec¬
utive Model and Ada,” The Journal of Real-
Time Systems, Vol. 1, No. 1, June 1989, pp.
7-25.

62 COMPUTER

7. P. Naur, “Programming as Theory Build¬
ing,” Microprocessing and Microprogram¬
ming, The Euromicro Journal, Vol. 15, No.
5, May 1985.

8. R.S. Wurman, Information Anxiety, Dou¬
bleday, New York, 1989.

9. W. A. Halang, “Education of Real-Time
Systems Engineers,” Microprocessing and
Microprogramming, The Euromicro Jour¬
nal, Vol. 25, No. 1-5, January 1989, pp. 71-
75.

10.1. Jacobson, Concepts for Modelling Large
Real-Time Systems, Doctoral Dissertation,
Department of Computer Systems, The Royal
Institute of Technology, August 1985.

11. R. Witty, “Dimensional Flowcharting,”
Software Practice and Experience, Vol. 7,
1977, pp. 553-584.

12. M. Bertran, and J.A. Xampeny, “Comput¬
erized Power Network Telecontrol Center:
Environment and Solution Framework,”
Proc. IEEE Power Engineering Society
Summer Meeting, Vancouver, Canada, July

Harold W. Lawson is an independent consult¬
ant. He has been active in the field of computing
since 1958 and has broad international experi¬
ence in industrial and academic environments.

During his industrial career, he contributed to
several pioneering efforts in hardware and soft¬
ware technologies at Univac, IBM, and Stan¬
dard Computer Corporation. He has held per¬
manent and visiting professorial appointments
at several universities and is an active consultant
in North America, Europe, and the Far East. His
publications include several books and contrib¬
uted chapters, as well as over 60 technical con¬
tributions. He has been active in many profes¬
sional societies and is a senior member of IEEE.

Lawson received the BS degree from Temple
University and the PhD degree from the Royal
Technical University, Stockholm.

The author can be contacted at Lawson Pub¬
lishing and Consulting, Inc., Torshammarsvagen
11 3tr, 181 33 Lidingo, Sweden.

OP0
Jr' Northcon/):

The Premier Electronics Industry
Conference of the Northwest
October 1-3, 1991 in Portland, Oregon

Northcon is bring ing this comprehensive

electronics conference and exhibition to

Portland, Oregon, where more than 9,000

electronics engineering professionals -

design, test and manufacturing engineers,

specifiers, purchasing specialists,

engineering management, R&D and

corporate personnel, quality specialists

and corporate executives - will gather to

team about the latest electronics products

and technology.

Papers for presentation in the technical

sessions are requested in five areas:

1. DesignfTest/Productbn/Management

2. Computer Hardware/Software

Advances

3. Research and Development

4. Quality and Reliability

5. Regulations and Environment

Fora paper to be considered, a 1000-

word summary must be submitted that
states the objective of the paper, the new

contributions, and the conclusion that will

be made. Previously published materials

are not acceptable.

Abstracts must be mailed or faxed no later

than March 15, 1991 to be considered for

evaluation.

Please submit abstracts to:

Jon S. Potts

Technical Programs Chair
c/o NORTNCON/91

8110 Airport Boulevard

Los Angeles, CA 90045-3194

(800) 877-2668 or

(213)215-3976, ext. 251

FAX- (213) 641 -5117

Jr' Northcon ’

is a joint venture of:

Portland and Seattle
Sections of the
Institute of Electrical
and Electronics
Engineers, IEEE

0
Electronics
Manufacturers
Association, EMA

Cascade Chapter of
the Electronics
Representatives
Association, ERA

December 1990

C
A

L
L
 F

O
R

 P
A

P
E

R
S

In

d
iv

id
u
al P

a
p

e
rs

a
n

d

G

ro
u
p

S

e
ssio

n
s

a
re

invited.

Symposium Chair:
V.K. Agarwal
McGill University

Program Chair:
E. Cerny
Universite de Montreal

Publication Chair:
D.J. Taylor
University of Waterloo

Finance & Local
Arrangements Chair:
F. Coallier
Bell Canada

Publicity Chair:
R. Hum
Bell Northern Research

Registration Chair:
J. Rajski
McGill University

Program Committee
to include:
J. Abraham, USA
J. Arlat, France
V. R. Chillarege, USA
H. Eveking, FRG
W. K. Fuchs, USA
M-C Gaudel, France
R. Horst, USA
lhara H., Japan
P. Jalote, India
N.K. Jha, USA
F, Kaudel, Canada
J.P.J. Kelly, USA
Kikuno T., Japan
J.H. Lala, USA
Y. Levendel, USA
M. Malek, USA
G. M. Masson, USA
W. Merker, FRG
Mori K., Japan
B. Nadeau-Dostie, Canada
M. Nicolaidis, France
A. Pelc, Canada
D.K. Pradhan, USA
J. Rajski, Canada
B. Randell, England
S. M. Reddy, USA
Y. Savaria, Canada
D.P. Siewiorek, USA
L. Simoncini, Italy
T. B, Smith, USA
A.K. Somani, USA
J. Stiffler, USA
D.J. Taylor, Canada
K. S. Trivedi, USA
K.D. Wagner, USA
C. J. Walter, USA

Ex-officio member:
H. Kopetz, TC chairman
TU Vienna, Austria

FTCS
^ o 1 Z 1

The Twenty-First Annual
International Symposium
on Fault-Tolerant Computing

25-27 June, 1991

Le Grand Hotel
777, rue Universite
Montreal, Quebec
Canada H3C3Z7
Phone: 514-879-1370

Sponsored by:
IEEE Computer Society
In co-operation with:
IFIP Working Group 10.4

The Fault-Tolerant Computing Symposium

has become the major international forum

in all aspects of fault-tolerant computing,

such as: specification, design, implementa¬

tion, test, diagnosis and evaluation of

dependable and fault-tolerant computing

systems. The scope of the symposium

spans hardware, software and system

issues.

Major topics include, but are not limited

to: fault-tolerance in real-time systems,

certification of safety-critical systems,

software fault tolerance, fault recovery

in transaction-processing systems, data

security and integrity, fault tolerance in

communication networks, validation of

VLSI designs and implementations, testing

and defect tolerance.

Important Information:

Advance Registration Canadian Dollars

May 15,1991

Member IEEE $375

Non-Member $475

Student $100

At Conference Registration

After May 15,1991

Member IEEE $450

Non-Member $550

Student $125

About Montreal:

Montreal, founded in 1642, is the only

French metropolis in North America,

and is the second-largest French city

in the world after Paris^kbcated on

an island in the narrows of the St

Lawrence river, with a population of

some 2 million, Montreal offers visitors

a unique blend of American and

European culture, with a "down home"

flavour rooted in a rich folk tradition.

Symposium participants are invited

to extend their visit for a few days to

catch the Montreal International Jazz

Festival, prowl the cobbled streets of

Old Montreal, or just lounge in a bistro

on rue St-Denis. Experience a city with
a difference.

FTCS-21 Registration

c/o Prof. Janusz Rajski

McGill University

Dept, of Electrical Engineering

3480 University St., Room 633

Montreal, CANADA H3A2A7

FAX: (514)398-4470

email: rajski@spock.ee.mcgill.ca

) IEEE COMPUTER SOCIETY

An Overview of Common
Benchmarks

Reinhold P. Weicker

Siemens Nixdorf Information Systems

The main reason for using comput¬
ers is to perform tasks faster. This
is why performance measurement

is taken so seriously by computer custom¬
ers. Even though performance measurement
usually compares only one aspect of com¬
puters (speed), this aspect is often dominant.
Normally, a mainframe customer can run
typicalapplications on a new machine before
buying it. With microprocessor-based
systems, hbwever, original equipment man¬
ufacturers must make decisions without
detailed knowledge of the end user’s code,
so performanceVneasurements with standard

benchmarks become more important.
Performance is a broad area, and tradi¬

tional benchmarks cover only part of it.
This article is restricted to benchmarks
measuring hardware speed, including
compiler code generation; it does not cover
the more general area of system benchmarks
(for example, operating system perfor¬
mance). Still, manufacturers use traditional
benchmarks in their advertising, and cus¬
tomers use them in making decisions, so it
is important to know as much as possible
about them. This article characterizes the
most often used benchmarks in detail and
warns users about a number of pitfalls.

The ubiquitous MIPS
numbers

For comparisons across different in¬
struction-set architectures, the unit MIPS,
in its literal meaning of millions of instruc¬
tions per second (native MIPS), has lost

“Fair benchmarking”

would be less of an

oxymoron if those

using benchmark

results knew what

tasks the benchmarks

really perform and

what they measure.

nearly all its significance. This became
obvious when reduced instruction-set
computer architectures appeared.1 Opera¬
tions that can be performed by one CISC
(complex instruction-set computer) in¬
struction sometimes require several RISC
instructions. Consider the example of a

high-level language statement

A = B + C /* Assume mem operands */

With a CISC architecture, this can be
compiled into one instruction:

add mem (fi), mem (C), mem (A)

On a typical RISC, this requires four in¬

structions:

load mem (fi), reg (B)
load mem (C), reg (C)
add reg (B), reg (C), reg (A)
store reg (A), mem (A)

If both machines need the same time to
execute (not unrealistic in some cases),
should the RISC then be rated as a 4-MIPS
machine if the CISC (for example, a VAX
11) operates at 1 MIPS? The MIPS number
in its literal meaning is still interesting for
computer architects (together with the CPI
number — the average number of cycles
necessary for an instruction), but it loses its
significance for the end user.

Because of these problems, “MIPS” has
often been redefined, implicitly or explic¬
itly, as “VAX MIPS.” In this case MIPS is
just a performance factor for a given ma¬
chine relative to the performance of a VAX
11/780. If a machine runs some program or
set of programs X times faster than a VAX
11/780, it is called an X-MIPS machine.
This is based on computer folklore saying

that for typical programs a VAX 11/780
performs one million instructions per sec¬
ond. Although this is not true,* the belief is

*Some time ago I ran the Dhrystone benchmark pro¬
gram on VAX 1 l/780s with different compilers. With
Berkeley Unix (4.2) Pascal, the benchmark was trans¬
lated into 483 instructions executed in 700 microsec¬
onds, yielding 0.69 (native) MIPS. With DEC VMS
Pascal (V. 2.4), 226 instructions were executed in 543
microseconds, yielding 0.42 (native) MIPS. Interest¬
ingly, the version with the lower MIPS rating executed
the program faster.

December 1990 0018-9162/90/ 1200-065S01.00 © 65

widespread. When VAX MIPS are quoted,
it is important to know what programs
form the basis for the comparison and what
compilers are used for the VAX 11/780.
Older Berkeley Unix compilers produced

code up to 30 percent slower than VMS
compilers, thereby inflating the MIPS rat¬
ing of other machines.

The MIPS numbers that manufacturers
give for their products can be any of the
following:

• MIPS numbers with no derivation. This
can mean anything, and flippant interpre¬
tations such as “meaningless indication of
processor speed” are justified.

• Native MIPS, or MIPS in the literal
meaning. To interpret this you must know
what program the computation was based
on and how many instructions are generated
per average high-level language statement.

• Peak MIPS. This term sometimes ap¬
pears in product announcements of new
microprocessors. It is largely irrelevant,
since it equals the clock frequency for most
processors (most can execute at least one
instruction in one clock cycle).

• EDN MIPS, Dhrystone MIPS, or sim¬
ilar. This could mean native MIPS, when a
particular program is running. More often
it means VAX MIPS (see below) with a
specific program as the basis for compar-

• VAX MIPS. A factor relative to the
VAX 11/780, which then raises the fol¬
lowing questions: What language? What
compiler (Unix or VMS) was used for the
VAX? What programs have been measured?
(Note that DEC uses the term VUP, for
VAX unit of performance, in making
comparisons relative to the VAX 11/780.
These units are based on a set of DEC
internal programs, including some floating¬
point programs.)

In short, Omri Serlin2 is correct in say¬
ing, “There are no accepted industry stan¬
dards for computing the value of MIPS.”

Benchmarks

Any attempt to make MIPS numbers
meaningful (for example, VAX MIPS)
comes down to running a representative
program or set of programs. Therefore, we
can drop the notion of MIPS and just
compare the speed for these benchmark
programs.

It has been said that the best benchmark
is the user’s own application. But this is
often unrealistic, since it is not always

possible to run the application on each
machine in question. There are other con¬
siderations, too: The program may have
been tailored to run optimally on an older
machine; original equipment manufactur¬
ers must choose a microprocessor for a
whole range of applications; journalists
want to characterize machine speed inde¬
pendent of a particular application program.
Therefore, the next best benchmark (1) is
written in a high-level language, making it
portable across different machines, (2) is
representative for some kind of program¬
ming style (for example, systems pro¬
gramming, numerical programming, or
commercial programming), (3) can be
measured easily, and (4) has wide distri¬
bution.

Obviously, some of these requirements
are contradictory. The more representative
the benchmark program — in terms of
similarity to real programs — the more
complicated it will be. Thus, measurement
becomes more difficult, and results may be
available for only a few machines. This
explains the popularity of certain benchmark
programs that are not complete application
programs but still claim to be representa¬
tive for a given area.

This article concentrates on the most
common “stone age” benchmarks (CPU/
memory/compiler benchmarks only) — in
particular the Whetstone, Dhrystone, and
Linpack benchmarks. These are the
benchmarks whose results are most often
cited in manufacturers’ publications and in
the trade press. They are better than
meaningless MIPS numbers, but readers
should know their properties — that is,
what they do and don’t measure.

Whetstone and Dhrystone are synthetic
benchmarks: They were written solely for
benchmarking purposes and perform no
useful computation. Linpack was distilled
out of a real, purposeful program that is
now used as a benchmark.

Tables A-D in the sidebar on pages 68-
69 give detailed information about the high-
level language features used by these
benchmarks. Comparing these advantages
with the characteristics of the user’s own
programs shows how meaningful the results
of a particular benchmark are for the user’s
own applications. The tables contain
comparable information for all three
benchmarks, thereby revealing their dif¬
ferences and similarities.

All percentages in the tables are dynam¬
ic percentages, that is, percentages obtained
by profiling or, for the language-feature
distribution, by adding appropriate counters
on the source level and executing the pro¬

gram with counters. Note that for all pro¬
grams, even those normally used in the
Fortran version, the language-feature-re¬
lated statistics refer to the C version of the
benchmarks; this was the version for which
the modification was performed. Howev¬
er, since most features are similar in the
different languages, numbers for other
languages should not differ much. The
profiling data has been obtained from the
Fortran version (Whetstone, Linpack) or
the C version (Dhrystone).

Whetstone

The Whetstone benchmark was the first
program in the literature explicitly designed
for benchmarking. Its authors are H.J.
Curnow and B.A. Wichmann from the
National Physical Laboratory in Great
Britain. It was published in 1976, with
Algol 60 as the publication language. To¬
day it is used almost exclusively in its
Fortran version, with either single precision
or double precision for floating-point
numbers.

The benchmark owes its name to the
Whetstone Algol compiler system. This
system was used to collect Statistics about
the distribution of “Whetstoni: instructions,”
instructions of the intermediate language
used by this compiler, for a largenumber of
numerical programs. A synthetic program
was then designed. It consisted of several
modules, each containing statements of
some particular type (integer arithmetic,
floating-point arithmetic, “if’ statements,
calls, and so forth) and ending with a
statement printing the results. Weights were
attached to the different modules (realized
as loop bounds for loops around the indi¬
vidual modules’ statements) such that the
distribution of Whetstone instructions for
the synthetic benchmark matched the dis¬
tribution observed in the program sample.
The weights were chosen in such a way that
the program executes a multiple of one
million of these Whetstone instructions;
thus, benchmark results are given as KWIPS
(kilo Whetstone instructions per second)
or MWIPS (mega Whetstone instructions
per second). This way the familiar term
“instructions per second” was retained but
given a machine-independent meaning.

A problem with Whetstone is that only
one officially controlled version exists —
the Pascal version issued with the Pascal
Evaluation Suite by the British Standards
Institution — Quality Assurance (BSI-
QAS). Versions in other languages can
be registered with BSA-QAS to ensure

66 COMPUTER

comparability.
Many Whetstone versions copied infor¬

mally and used for benchmarking have the
print statements removed, apparently with
the intention of achieving better timing
accuracy. This is contrary to the authors’
intentions, since optimizing compilers may
then eliminate significant parts of the
program. If timing accuracy is a problem,
the loop bounds should be increased in
such a way that the time spent in the extra
statements becomes insignificant.

Users should know that since 1988 there
has been a revised (Pascal) version of the
benchmark.3 Changes were made to mod¬
ules 6 and 8 to adjust the weights and to
preclude unintended optimization by

compilers. The print statements have been
replaced by statements checking the values
of the variables used in the computation.
According to Wichmann,3 performance
figures for the two versions should be very
similar; however, differences of up to 20
percent cannot be ruled out. The Fortran
version has not undergone a similar revi¬
sion, since with the separate compilation
model of Fortran the danger of unintended
optimization is smaller (though it certainly
Wists if all parts are compiled in one unit).
411 Whetstone data in this article is based

le language-feature
identical for both

Size, procedure profile, and language-
feature distribution. The static length of
the Whetstone benchmark (C version) as
compiled by the VAX Unix 4.3 BSD C
compiler* is 2,117 bytes (measurement
loops only). However, because of the pro¬
gram’s nature, the length of the individual
modules is more important. They are be¬
tween 40 and 527 bytes long; all except one
are less than 256 bytes long. The weights

(upper loop bounds) of the individual
modules number between 12 and 899.

Table 1 shows the distribution of execu¬
tion time spent in the subprograms of
Whetstone (VAX 11/785, BSD 4.3 For¬
tran, single precision). The most important,
and perhaps surprising, result is that Whet¬
stone spends more than half its time in
library subroutines rather than in the com¬

piled user code.
The distribution of language features is

shown in Tables A-D in the sidebar on

on, the old version; t
statistics are almost
versions'

♦With the Unix 4.3 BSD language systems, it was
easier to determine the code size for the C version. The
numbers for the Fortran version should be similar.

Table 1. Procedure profile for Whetstone.*

Procedure Percent What is done there

Main program 18.9

p3 14.4 FP arithmetic

pO 11.6 Indexing

pa 1.9 FP arithmetic

User code 46.8

Trigonometric functions 21.6 Sin, cos, atan

Other math functions 31.7 Exp, log, sqrt

Library functions 53.3

Total 100

♦Because of rounding, all percentages can add up to a number slightly below or above 100.

pages 68-69. Some properties of Whet¬
stone are probably typical for most numer¬
ic applications (for example, a high num¬
ber of loop statements); other properties
belong exclusively to Whetstone (for ex¬

ample, very few local variables).

Whetstone characteristics. Some im¬
portant characteristics should be kept in
mind when using Whetstone numbers for

performance comparisons.

(1) Whetstone has a high percentage of
floating-point data and floating-point op¬
erations. This is intentional, since the
benchmark is meant to represent numeric
programs.

(2) As mentioned above, a high per¬
centage of execution time is spent in
mathematical library functions. This
property is derived from the statistical data
forming the basis of Whetstone; however,

it may not be representative for most of
today’s numerical application programs.
Since the speed of these functions (realized
as software subroutines or microcode)
dominates Whetstone performance to a high
degree, manufacturers can be tempted to
manipulate the runtime library for Whet¬
stone performance.

(3) As evident from Table D in the side-
bar, Whetstone uses very few local variables.
When Whetstone was written, the issue of
local versus global variables was hardly
being discussed in software engineering,
not to mention in computer architecture.
Because of this unusual lack of local vari¬
ables, register windows (in the Sparc RISC,
for example) or good register allocation
algorithms for local variables (say, in the

MIPS RISC compilers) make no differ¬

ence in Whetstone execution times.
(4) Instead of local variables, Whetstone

uses a handful of global data (several scalar
variables and a four-element array of con¬
stant size) repeatedly. Therefore, a compiler
in which the most heavily used global
variables are allocated in registers (an op¬
timization usually considered of secondary
importance) will boost Whetstone perfor¬
mance.

(5) Because of its construction principle
(nine small loops), Whetstone has an ex¬
tremely high code locality. A near 100
percent hit rate can be expected even for
fairly small instruction caches. For the same
reason, a simple reordering of the source
code can significantly alter the execution
time in some cases. For example, it has
been reported that for the MC68020 with
its 256-byte instruction cache, reordering
of the source code can boost performance

up to 15 percent.

Linpack

As explained by its author, Jack Don-
garra4 from the University of Tennessee
(previously Argonne National Laboratory),
Linpack didn’t originate as a benchmark.
When first published in 1976, it was just a
collection (a package, hence the name) of
linear algebra subroutines often used in
Fortran programs. Dongarra, who collects
and publishes Linpack results, has now
distilled what was part of a “real life”
program into a benchmark that is distrib¬

uted in various versions.5
The program operates on a large matrix

December 1990 67

(two-dimensional array); however, the in¬
ner subroutines manipulate the matrix as a
one-dimensional array, an optimization
customary for sophisticated Fortran pro¬
gramming. The matrix size in the version
distributed by standard mail servers is 100
x 100 (within a two-dimensional array

declared with bounds 200), but versions
for larger arrays also exist.

The results are usually reported in mil¬
lions of floating-point operations per sec¬
ond (Mflops); the number of floating-point
operations the program executes can be
derived from the array size. This terminol¬

ogy means that the nonfloating-point op¬
erations are neglected or, stated another
way, that their execution time is included
in that of the floating-point operations.
When floating-point operations become
increasingly faster relative to integer oper¬
ations, this terminology becomes some-

Tables covering more than one benchmark

Table A. Statement distribution in percentages. *

Statement Dhrystone Whetstone Linpack/saxpy

Assignment of variable 20.4 14.4
Assignment of constant 11.7 8.2
Assignment of n expression (one operator) 17.5 1.4
Assignment of n expression (two operators) 1.0 24.3 48.5
Assignment of n expression (three operators) 1.0 1.6
Assignment of n expression (>three operators) 6.8

One-sided if statement, “then” part executed 2.9 0.5
One-sided if statement, “then” part not executed 3.9 0.1 2.2
Two-sided if statement, “then” part executed 4.9 4.0
Two-sided if statement, “else” part executed 1.9 4.0

For statement (evaluation) 6.8 17.3 49.3
Goto statement 0.5
While/repeat statement (evaluation) 4.9
Switch statement 1.0" - '

Break statement 1.0

Return statement (with expression) 4.9

Call statement (user procedure) 9.7 11.9
Call statement (user function) 4.9
Call statement (system procedure) 1.0
Call statement (system function) 1.0 4.7

100 100 100

*Because of rounding, all percentages can add up to a number slightly below or above 100.

Table C. Operand data-type distribution i n percentages.

Operand Data Type Dhrystone Whetstone Linpack/saxpy

Integer 57.0 55.7 67.2
Char 19.6
Float/double 44.3 32.8
Enumeration 10.9
Boolean 4.2
Array 0.8
String 2.3
Pointer 5.3

100 100 100

COMPUTER

what misleading.
For Linpack, it is important to know

what version is measured with respect to
the following attribute pairs:

• Single/double — Fortran single preci¬
sion or double precision for the floating¬

point data.
• Rolled/unrolled — In the unrolled ver¬

sion, loops are optimized at the source
level by “loop unrolling”: The loop index
(say, i) is incremented in steps of four, and
the loop body contains four groups of
statements, for indexes i, i + 1, i + 2, and i

Table B. Operator distribution in percentages.

Operator Dhrystone Whetstone Linpack/saxpy

+ (int/char) 21.0 11.9 14.1

- (int) 5.0 6.0

* (int) 2.5 6.0

/ (int) 0.8 - -
Integer arithmetic 29.3 23.9 14.1

+ (float/double) 14.9 14.1

- (float/double) 2.1

* (float/double) 9.3 14.1

/ (float/double) 4.6 -
\ Floating-point arithmetic 30.9 28.2

1 <, <= (inch loop control) 10.1 10.7 14.5

1 Other relational operators 11.7 _2JL _06

\ Relational 21.8 13.5 15.1

Logical 3.3 0.2

Indexing (one-dimensional) 5.9 24.5 42.3

Indexing (two-dimensional) 3.4

Indexing 9.3 24.5 423

Record selection 7.6
Record selection via pointer 15.1

Record selection 22.7

Address operator (C) 5.0 3.6

Indirection operator (C) 8.4 3.6

C-specific operators 13.4 7.2

Total 100 100 100

Table D. Operand locality distribution in percentages.

Operand Locality Dhrystone Whetstone Linpack/saxpy

Local 48.7 0.4 49.5

Global 8.3 56.3

Parameter (value) 10.6 18.6 17.0

Parameter (reference) 6.8 1.9 24.6

Function result 2.3 1.3

Constant 23.4 21.6 8.8

100 100 100

+ 3. This technique saves execution time
for most machines and compilers; howev¬
er, more sophisticated vector machines,
where loop unrolling is done by the com¬
piler generating code for vector hardware,
usually execute the standard (rolled) ver¬
sion faster.

• Coded BLAS/Fortran BLAS — Lin¬
pack relies heavily on a subpackage of
basic linear algebra subroutines (BLAS).
Coded BLAS (as opposed to Fortran BLAS)
means that these subroutines have been
rewritten in assembly language. Dongarra
has stopped collecting and publishing re¬
sults for the coded BLAS version and re¬
quires that only the Fortran version of these
subroutines be used unchanged. However,
some results for coded BLAS versions are
still cited elsewhere. Computing the exe¬
cution-time ratio between coded BLAS and
Fortran BLAS versions for the same ma¬
chine offers insights about the Fortran
compiler’s code optimization quality: For

some machines the ratio is 1.2 to 1; for
others it can be as high as 2 to 1.

Size, procedure profile, and language-
feature distribution. The Linpack data
reported here is for the rolled version, single
precision, with Fortran BLAS; code sizes

have been measured with VAX Unix BSD
4.3 Fortran.

The static code length for all subprograms
is 4,537 bytes. The length for individual
subprograms varies between 111 and 1,789
bytes; the most heavily used subprogram,
saxpy, is 234 bytes long. Data size, in the
standard version, is dominated by an array
of 100 x 100 real numbers. For 32-bit
machines, this means that with single pre¬
cision, 40 Kbytes are used for data (80
Kbytes with double precision).

Table 2 shows the distribution of execu¬
tion time in the various subroutines. The
most important observation from the table
is that more than 75 percent of Linpack’s
execution time is spent in a 15-line sub¬
routine (called saxpy in the single-preci¬
sion version and daxpy in the double¬
precision version). Dongarra4 reports that
on most machines the percentage is even
higher (90 percent). Because of this ex¬
treme concentration of execution time in
the saxpy subroutine, and because of the
time-consuming instrumentation method
for obtaining the measurements, language-
feature distribution has been measured
only for the saxpy subroutine (rolled
version).

Table A in the sidebar shows that very
few statement types (assignment with
multiplication and addition, and “for”

December 1990 69

Table 2. Procedure profile for Unpack.

Procedure Percent What is done there

Main program 0.0
matgen 13.8
sgefa 6.2
saxpy 77.1 y[i]=y[i] + a*x[i]
isamax 1.6
Miscellaneous 1.2
User code 100

Library functions 0.0

statements) make up the bulk of the
subroutine and, therefore, of Unpack it¬
self. The data is mostly reference pa¬
rameters (array values) or local variables
(indexes); there are hardly any global
variables.

Linpack characteristics. To interpret
performance characterizations by Linpack
Mflops, it helps to know the benchmark’s
main characteristics:

• As expected for a numeric benchmark,
Linpack has a high percentage of floating¬
point operations, though only a few are
actually used. For example, the program
has no floating-point divisions. In striking
contrast to Whetstone, no mathematical
functions are used at all.

• The execution time is spent almost
exclusively in one small function. This
means that even a small instruction cache
will show a very high hit rate.

• Contrary to the high locality for code,
Linpack has a low locality for data. A
larger size for the main matrix leads —
depending on the cache size — to signifi¬
cantly more cache misses and therefore to
a lower Mflops rate. So, in making com¬
parisons, it is important to know whether
Linpack Mflops for different machines have
been computed using the same array di¬
mensions. Also, Linpack can be highly
sensitive to the cache configuration: A
different array alignment (201 x 200 in¬
stead of 200 X 200 for the global array
declaration) can lead to a different mapping
of data to cache lines and therefore to a
considerably different execution time. The
program, as distributed by the standard
mail servers, delivers Mflops numbers for
two choices of leading dimension, 200 and
201; we can assume that manufacturers
report the better number.

Dhrystone

As the name indicates, Dhrystone was
developed much as Whetstone was; it is a
synthetic benchmark that I published in
1984. The original language of publication
is Ada, although it uses only the Pascal
subset of Ada and was intended for easy
translation to Pascal and C. It is used mainly
in the C version.

The basis for Dhrystone is a literature
survey on the distribution of source language
features in nonnumeric, system-type pro¬
gramming (operating systems, compilers,
editors, and so forth). In addition to the
obvious difference in data types (integral
versus floating-point), numeric and system-
type programs have other differences, too:
System programs contain fewer loops,
simpler computational statements, and more
“if’ statements and procedure calls.

Dhrystone consists of 12 procedures
included in one measurement loop with 94
statements. During one loop (one Dhrys¬
tone), 101 statements (103 in the C version)
are executed dynamically. The results are
usually given in Dhrystones per second.
The program (currently Version 2.1) has
been distributed mainly through Usenet,
the Unix network; I also make it available
on a floppy disk. Rick Richardson has
collected and posted results for the Dhry¬
stone benchmark regularly to Usenet (the
latest list of results is dated April 29,1990).

Size, procedure profile, and language-
feature distribution. The static length of
the Dhrystone measurement loop, as com¬
piled by the VAX Unix (BSD 4.3) C
compiler, is 1,039 bytes. Table 3 shows the
distribution of execution time spent in its
subprograms.

The percentage of time spent in string
operations is highly language dependent; it

drops to 10 percent instead of 16 percent if
the Pascal (or Ada) version is used (mea¬
surement for Berkeley Unix 4.3 Pascal).
On the other hand, the number is higher for
newer RISC machines with optimizing
compilers, mainly because they spend much
less time in procedure calls than the VAX.

Consistent with usage in system-type
programming, arithmetic expressions are
simpler than in the other benchmarks; there
are more “if’ statements and fewer loops.

Dhrystone was the first benchmark to
explicitly consider the locality of operands:
Local variables and parameters are used
more often than global variables. This is
not only consistent with good software
engineering practices but also important
for modern CPU architectures (RISC ar¬
chitectures). On older machines with few
registers, local variables and parameters
are allocated in memory in the same way as
global variables; on RISC machines they
typically reside in registers. The resulting
difference in access time is one of the
most important advantages of RISC ar¬
chitectures.

Dhrystone characteristics. Familiarity
with the benchmark’s main characteristics,
described below, is important when inter¬
preting Dhrystone performance character¬
izations.

• As intended, Dhrystone contains no
floating-point operations in its measurement
loop.

• A considerable percentage of execution
time is spent in string functions; this number
should have been lower. In extreme cases
(MIPS architecture and C compiler), this
number goes up to 40 percent.

• Unlike Whetstone, Dhrystone contains
hardly any loops within the main mea¬
surement loop. Therefore, for micropro¬
cessors with small instruction caches (be¬
low 1,000 bytes), almost all instruction
accesses are cache misses. But as soon as
the cache becomes larger than the mea¬
surement loop, all instruction accesses are
cache hits.

• Only a small amount of global data is
manipulated, and the data size cannot be
scaled as in Linpack.

• No attempt has been made to thwart
optimizing compilers. The goal was for the
program to reflect typical programming
style; it should be just as optimizable as
normal programs. An exception is the
optimization of dead-code removal. Since
in Version 1 the computation results were
not printed or used, optimizing compilers

were able to recognize many statements as

70 COMPUTER

dead code and suppress code generation
for these statements. In Version 2, this has

been corrected.

Ground rules for Dhrystone number
comparisons. Because of Dhrystone’s
peculiarities, users should be sure to observe
certain ground rules when comparing
Dhrystone results. First, the version used
should be 2.1; the earlier version, 1.1, leaves
too much room for distortion of results by
dead-code elimination.

Second, the two modules must be com¬
piled separately, and procedure merging
(in-lining) is not allowed for user proce¬
dures. ANSI C, however, allows in-lining
of library routines (relevant for string
routines in the C version of Dhrystone).

Third, when processors are compared,
the same programming language must be
used on both. For compilers of equal quality,
Pascal and Ada numbers can be about 10
percent better because of the string se¬

mantics. In C, the length of a string is
normally not known at compile time, and
the compiler needs — at least for the string
comparison statement in Dhrystone — to
generate code that checks each byte for the
string terminator byte (null byte). With
Pascal and Ada the compiler can generate
word instructions (usually in-line code) for
the string operations.

Therefore, for a meaningful comparison
of C-version results, it helps to be able to
answer certain questions:

(1) Are the string routines written in

machine code?
(2) Are the string routines implemented

as in-line code?
(3) Does the compiler use the fact that

in the “strcpy” statement the source oper¬
and has a fixed length? If it does (legal
according to ANSI C), this statement can
be compiled in the same way as a record
assignment, which can result in consider¬

able savings.
(4) Is a word alignment assumed for the

string routines? This is acceptable for the
strcpy statement only, not for the “strcmp”

statement.

Language systems are allowed to opti¬
mize for cases 1 through 3 above, just as
they can for programs in general. For pro¬
cessor comparisons, however, it is impor¬
tant that the compilers used apply the same
amount of optimization; otherwise, opti¬
mization differences may overshadow CPU
speed differences. This usually requires an
inspection of the generated machine code
and the C library routines.

Table 3. Dhrystone procedure profile.

Procedure Percent What is done there

Main program 18.3

User procedures 65.7

User code 84.0

strcpy 8.0 String copy
(string constant)

strcmp 8.1 String comparison
(string variables)

Library functions 16.1

Total 100

Other benchmarks

In addition to the most often quoted
benchmarks explained above, several other
programs are used as benchmarks, including

• Livermore Fortran Kernels,
• Stanford Small Programs Benchmark

Set,
• EDN benchmarks,
• Sieve of Eratosthenes,
• Rhealstone, and
• SPEC benchmarks.

These range from small, randomly chosen
programs such as Sieve, to elaborate
benchmark suites such as Livermore For¬
tran Kernels and SPEC benchmarks.

Livermore Fortran Kernels. The Liv¬
ermore Fortran Kernels, also called the
Lawrence Livermore Loops, consist of 24
kernels, or inner loops, of numeric com¬
putations from different areas of the physical
sciences. The author, F.H. McMahon of
Lawrence Livermore National Laboratory,
has collected them into a benchmark suite
and has added statements for time mea¬
surement. The individual loops range from
a few lines to about one page of source
code. The program is self-measuring and
computes Mflops rates for each kernel, for
three different vector lengths.

As we might expect, these kernels con¬
tain many floating-point computations and
a high percentage of array accesses. Sev¬
eral kernels contain vectorizable code; some
contain code that is vectorizable if rewritten.

(Feo6 provides a detailed discussion of the
Livermore Loops.) McMahon characterizes
the representati vity of the Livermore Loops
as follows:

The net Mflops rate of many Fortran programs
and work loads will be in the subrange between
the equi-weighted harmonic and arithmetic
means, depending on the degree of code
parallelism and optimization. The Mflops
metric provides a quick measure of the average
efficiency of a computer system, since its
peak computing rate is well known.

Stanford Small Programs Benchmark
Set. Concurrent with development of the

first RISC systems at Stanford University
and the University of California, Berkeley,
John Hennessy and Peter Nye at Stanford’s
Computer Systems Laboratory collected a
set of small programs (one page or less of
source code for each program). These
programs became popular mainly because

they were the basis for the first comparisons
of RISC and CISC processors. They have
now been packed into one C program
containing eight integer programs — Per¬

mutations, Towers of Hanoi, Eight Queens,
Integer Matrix Multiplication, Puzzle,
Quicksort, Bubble Sort, and Tree Sort —
and two floating-point programs — Float¬
ing-point Matrix Multiplication and Fast
Fourier Transformation.

Characteristics of the individual programs
vary; most contain a high percentage of
array accesses. There seems to be no offi¬
cial publication of the source code. The
only place I have seen the C code in print is
in a manufacturer’s performance report.

There is no standardized method for
generating an overall figure of merit from
the individual execution times. In one
version, a driver program assigns weights
between 0.5 and 4.44 to the individual
execution times. Perhaps a better alterna¬
tive, used by Sun and MIPS, is to compute
the geometric mean of the individual pro¬
grams’ execution times.

December 1990 71

Table 4. SPEC benchmark programs.

Acronym Short Characterization Language Main Data Types

gcc GNU C compiler C Integer

espresso PLA simulator C Integer

spice 2g6 Analog circuit simulation Fortran Floating point

doduc Monte Carlo simulation Fortran Floating point

nasa7 Collection of several numerical “kernels” Fortran Floating point

li Lisp interpreter C Integer

eqntott Switching-function minimization, mostly sorting C Integer

matrix300 Various matrix multiplication algorithms Fortran Floating point

fpppp Maxwell equations Fortran Floating point

tomcatv Mesh generation, highly vectorizable Fortran Floating point

EDN benchmarks. The program col¬
lection now known as the EDN bench¬
marks was developed by a group at Carn¬
egie Mellon University for the Military
Computer Family project. EDN published
it in 1981. Originally, the programs were
written in several assembly languages (LSI-
11/23, 8086, 68000, and Z8000); the in¬
tention was to measure the speed of mi¬
croprocessors without also measuring the
compiler’s quality.

A subset of the original benchmarks is

often used in a C version:

• Benchmark E: String search
• Benchmark F: Bit test/set/reset
• Benchmark H: Linked list insertion
• Benchmark I: Quicksort
• Benchmark K: Bit matrix transforma¬

tion

This subset of the EDN benchmarks has
been used in Bud Funk’s comparison of
RISC and CISC processors.7 There seems
to be no standard C version of the EDN
benchmarks; the programs are disseminated

informally.

Sieve of Eratosthenes. One of the most
popular programs for benchmarking small
PCs is the Sieve of Eratosthenes, some¬
times called “Primes.” It computes all prime
numbers up to a given limit (usually 8,192).
The program has some unusual character¬
istics. For example, 33 percent of the dy¬
namically executed statements are assign¬
ments of a constant; only 5 percent are
assignments with an expression at the right-
hand side. There are no “while” statements
and no procedure calls; 50 percent of the
statements are loop control evaluations.

All operands are integer operands, and 58

percent of them are local variables.
The program is mentioned here not be¬

cause it can be considered a good bench¬
mark but because, as one author put it,
“Sieve performance of one compiler over
another has probably sold more compilers
for some companies than any other
benchmark in history.”

SPEC benchmarks. Probably the most
important current benchmarking effort is

SPEC — the systems performance evalu¬
ation cooperative effort. It started because
benchmarking experts at various companies
felt that most previously existing bench¬
marks (usually small programs) were in¬
adequate. Small benchmarks can no longer

be representative for real programs when it
comes to testing the memory system, be¬
cause with the growing size of cache
memories and the introduction of on-chip
caches for high-end microprocessors, the
cache hit ratio comes close to 100 percent
for these benchmarks. Furthermore, once a
small program becomes popular as a
benchmark, compiler writers are inclined
(or forced) to “tweak” their compilers into
optimizations particularly beneficial to this
benchmark — for example, the string op¬
timizations for Dhrystone.

SPEC’s goal is to collect, standardize,
and distribute large application programs
that can be used as benchmarks. This is a
nontrivial task, since realistic programs
previously used in benchmarking (for ex¬

ample, the Unix utilities “yacc” or “nroff’)
often require a license and are therefore not
freely distributable.

The founding members of SPEC were
Apollo, Hewlett-Packard, MIPS, and Sun;

subsequently, AT&T, Bull, CDC, Com¬
paq, Data General, DEC, Dupont, Fujitsu,
IBM, Intel, Intergraph, Motorola, NCR,
Siemens Nixdorf, Silicon Graphics, Sol-
bourne, Stardent, and Unisys became
members.

In October 1989, SPEC released its first
set of 10 benchmark programs. Table 4
contains only a rough characterization of
the programs; J. Uniejewski8 provides a
more detailed discussion. Because a license
must be signed, and because of its size
(150,000 lines of source code), the SPEC
benchmark suite is distributed via magnetic
tape only.

Results are given as performance relative
to a VAX 11/780 using VMS compilers.
Results for several computers of SPEC
member companies are contained in the
regular SPEC Newsletter (see Additional
reading and address information). A com¬
prehensive number, the “SPECmark,” is
defined as the geometric mean of the rel¬
ative performance of the 10 programs.
However, SPEC requires a reporting form
that gives, in addition to the raw data, the
relative performance for each benchmark
program separately. Thus, users can select
the subset of performance numbers for
which the programming language and/or
the application area best matches their
applications.

Non-CPU influences in
benchmark
performance

In trade journals and advertisements,
manufacturers usually credit good bench-

72 COMPUTER

mark numbers only to the hardware sys¬
tem’s speed. With microprocessors, this is
reduced even more to the CPU speed.
However, the preceding discussion makes
it clear that other factors also have an
influence — for example, the programming
language, the compiler, the runtime library
functions, and the memory and cache size.

Programming-language influence.
Table 5 (numbers from Levy and Clark9
and my own collection of Dhrystone results)
shows the execution time of several pro¬
grams on the same machine (VAX, 1982
and 1985). Properties of the languages
(calling sequence, pointer semantics, and
string semantics) obviously influence ex¬
ecution time even if the source programs
look similar and produce the same results.

Compiler influence. Table 6, taken from
the MIPS Performance Brief,10 gives
Dhrystone results (as of January 1990) for
the MIPS M/2000 with the MIPS C com¬
piler cc2.0. The table shows how the dif¬
ferent levels of optimization influence ex¬
ecution time.

Note that optimization “04” performs
procedure in-lining, an optimization not
consistent with the ground rules and in¬
cluded in the report for comparison only.
On the other hand, the “strcpy” optimiza¬
tion for Dhrystone is not included in any of
the optimization levels for the MIPS C
compiler. If it is used, the Dhrystone rate
increases considerably.

Runtime library system. The role of
the runtime library system is often over¬
looked when benchmark results are com¬
pared. As apparent from Table 1, Whetstone
spends 40 to 50 percent of the execution
time in functions of the mathematical
subroutines library. The C version of
Dhrystone spends 16 percent of the exe¬
cution time in the string functions (VAX,
Berkeley Unix 4.3 C); with other systems,
the percentage can be higher.

Some systems have two flavors of the
mathematical floating-point library: The
first is guaranteed to comply with the IEEE
floating-point standard; the second is faster
and may give less accurate results under
some circumstances. Customers who must
rely on the accuracy of floating-point
computations should know which library
was used for benchmark measurements.

Cache size. It is important to look for the
built-in performance boost when the cache
size reaches the relevant benchmark size.
Depending on the difference between ac¬

Table 5. Performance ratio for different languages (larger is better, C = 1): Stan¬
ford programs.

Program Bliss C Pascal Ada

Search 1.24 1.0 0.70
Sieve 0.63 1.0 0.80
Puzzle 0.77 1.0 0.73
Ackermann 1.20 1.0 0.80

Dhrystone (1.1) 1.0 1.32 1.02

Table 6. Compiler optimization levels in Dhrystones/sec.

Optimization Level V. 1.1 V. 2.1

No opt., no “register” attribute 30,700 31,000
No opt., with “register” attribute 32,600 32,400
Optimization “O,” no “register” attribute 39,700 36,700
Optimization “O,” with “register” attribute 39,700 36,700
Optimization “03” 43,100 39,400
Optimization “04” 46,700 43,200

cess times for the cache and the main mem¬
ory, cache size can have a considerable

effect.
Table 7 summarizes the code sizes (size

of the relevant procedures/inner loops) and
data sizes (of the main array) for some
popular benchmarks. All sizes have been
measured for the VAX 11 with the Unix
BSD 4.3 C compiler, with optimization
“-0” (code compaction). Of course, the
sizes will differ for other architectures and
compilers. Typically, RISC architectures
lead to larger code sizes, whereas the data
size remains the same.

If the cache is smaller than the relevant
benchmark, reordering the code can, for
some benchmarks and cache configurations,
lead to considerable savings in execution
time. Such savings have been reported for
Whetstone on MC 68020 systems (reor¬
dering the source program) as well as for
Dhrystone on NS 32532, where just a dif¬
ferent linkage order can lead to a difference
of up to 5 percent in execution time. It is
debatable whether the “good case” or the
“bad case” better represents the system’s
true characteristics. In any event, custom¬
ers should be aware of these effects and
know when the standard order of the code
has been changed.

Table 7. Size in bytes for some popular
benchmarks.

Program Code Data

Whetstone -256 16
Dhrystone 1,039
Linpack (saxpy) 234 40,000

(100x100 version)
Sieve 160 8,192

(standard version)
Quicksort 174 20,000

(standard version)
Puzzle 1,642 511
Ackermann 52

Small, synthetic
benchmarks versus
real-life programs

It should be apparent by now that with
the advent of on-chip caches and sophisti¬
cated optimizing compilers, small bench¬
marks gradually lose their predictive val¬
ue. This is why current efforts like SPEC’s

December 1990 73

References
Obtaining benchmark sources via e-mail

Most of the benchmarks discussed in this article can be obtained via electronic
mail from several mail servers established at large research institutes.1 2 3 4 5 The ma¬
jor mail servers and their electronic mail addresses are shown below. Users can
get information about the use of these mail servers by sending electronic mail
consisting of the line “send index” to any of the mail servers.

The SPEC benchmarks are available only via magnetic tape.

North America
uucp:
Internet:
Internet:

Europe
EUNET/uucp:
Internet:
EARN/Bitnet:
X.400:

uunetlresearchlnetlib
netlib© research.att.cor
netlib@ornl.gov

naclnetlib
netlib@nac.no
netlib%nac.no@norunix.bitnet
s=netlib; o=nac; c=no;

Murray Hill, New Jersey

Oak Ridge, Tennessee

activities concentrate on collecting large,
real-life programs. Why, then, should this
article bother to characterize in detail these
“stone age” benchmarks? There are several
reasons:

(1) Manufacturers will continue to use
them for some time, so the trade press will
keep quoting them.

(2) Manufacturers sometimes base their
MIPS rating on them. An example is IBM’s
(unfortunate) decision to base the pub¬
lished (VAX-relative) MIPS numbers for
the IBM 6000 workstation on the old 1.1
version of Dhrystone. Subsequently, DEC
and Motorola changed the MIPS compu¬
tation rules for their competing products,
also basing their MIPS numbers on Dhry-
stone 1.1.

(3) For investigating new architectural
designs — via simulations, for example —
the benchmarks can provide a useful first
approximation.

(4) For embedded microprocessors with
no standard system software (the SPEC
suite requires Unix or an equivalent oper¬
ating system), nothing else may be avail¬
able.

(5) We can expect that larger bench¬
marks will not be completely free of distor¬
tions from unforeseen effects either. Ex¬
perience gained with smaller benchmarks
can help us be aware of such effects. For

example, it won’t be as easy to tweak
compilers for the SPEC benchmarks as it is
for the small benchmarks; but if it happens,
it also will be harder to detect.

Advice for users looking at bench¬

mark numbers to characterize
machine performance should be¬

gin with a warning not to trust MIPS num¬
bers unless their derivation is clearly ex¬
plained. Here are some other things to
watch for:

• Check whether Mflops numbers relate
to a standard benchmark. Does this
benchmark match your applications?

• Know the properties of the benchmarks
whose results are advertised.

• Be sure you know all the relevant facts
about your system and the manufacturer’s
benchmarking system. For hardware this
includes clock frequency, memory laten¬
cy, and cache size; for software it includes
programming language, code size, data size,
compiler version, compiler options, and
runtime library.

• Check benchmark code listings to make
sure apples are compared with apples and
that no illegal optimizations are applied.

• Ask for a well-written performance
report. Good companies provide all rele¬
vant details. ■

1. D.A. Patterson, “Reduced Instruction-Set
Computers,” Comm. ACM, Vol. 28, No. 1,
Jan. 1985, pp. 8-21.

2. O. Serlin, “MIPS, Dhrystones, and Other
Tales,” Datamation, June 1986, pp. 112-
118.

3. B.A. Wichmann, “Validation Code for the
Whetstone Benchmark,” Tech. Report NPL-
DITC 107/88, National Physical Laborato¬
ry, Teddington, UK, Mar. 1988.

4. J.J. Dongarra, “The Linpack Benchmark:
An Explanation,” in Evaluating Supercom¬
puters, Aad J. Van der Steen, ed., Chapman
and Hall, London, 1990, pp. 1-21.

5. J. Dongarra and E. Grosse, “Distribution of
Mathematical Software via Electronic Mail,”
Comm. ACM, Vol. 30, No. 5, May 1987, pp.
403-407.

6. J.T. Feo, “An Analysis of the Computational
and Parallel Complexity of the Livermore
Loops,” Parallel Computing, Vol. 7, No. 2,
June 1988, pp. 163-185.

7. B. Funk, “RISC and CISC Benchmarks and
Insights,” Unisys World, Jan. 1989, pp. 11-
14.

8. J. Uniejewski, “Characterizing System
Performance Using Application-Level
Benchmarks,” Proc. Buscon, Sept. 1989, pp.
159-167. Partial publication in SPEC
Newsletter, Vol. 2, No. 3, Summer 1990, pp.

9. H. Levy and D.W. Clark, “On the Use of
Benchmarks for Measuring System Perfor¬
mance,” Computer Architecture News, Vol.
10, No. 6, Dec. 1982, pp. 5-8.

10. MIPS Computer Systems, Inc., Performance
Brief, CPU Benchmarks, Issue 3.9, Jan. 1990,
p. 35.

Additional reading and
address information

Following are the main reference sources
for each of the benchmarks discussed in
this article, together with a short charac¬
terization. A contact person is identified
for each of the major benchmarks so that
readers can get additional information. For
information about access to the benchmark
sources via electronic mail, see the sidebar
“Obtaining benchmark sources via e-mail.”

74 COMPUTER

Whetstone

Curnow, H.J., and B.A. Wichmann, “A Synthet¬
ic Benchmark,” The Computer J.,Vol. 19, No. 1,
1976, pp. 43-49. Original publication, explana¬
tion of the benchmark design, program (Algol
60) in the appendix.

Wichmann, B.A., “Validation Code for the
Whetstone Benchmark,” see Reference 3. Dis¬
cussion of comments made to the original pro¬
gram, explanation of the revised version. Paper
contains a program listing of the revised ver¬
sion, in Pascal, including checks for correct
execution.

Contact: Brian A. Wichmann, National Physical
Laboratory, Teddington, Middlesex, England
TW11 OLW; phone 44 (81) 943-6976, fax 44
(81) 977-7091, Internet baw@seg.npl.co.uk.

Registration of other versions: J.B. Souter,
Benchmark Registration, BSI-QAS, PO Box 375,
Milton Keynes, Great Britain MK14 6LL.

Linpack

Dongarra, J J., etal., Unpack Users ’ Guide, SIAM
Publications, Philadelphia, Pa., 1976. Original
publication (not yet as a benchmark), contains
the benchmark program as an appendix.

Dongarra, J.J., “Performance of Various Com¬
puters Using Standard Equations Software in a
Fortran Environment,” Computer Architecture
News, Vol. 18, No. 1, Mar. 1990, pp. 17-31.
Latest published version of the regularly main¬
tained list of Linpack results, rules for Linpack
measurements.

Dongarra, J.J., “The Linpack Benchmark: An
Explanation,” see Reference 4. Explanation of
Linpack, guide to interpretation of Linpack re-

Contact: Jack J. Dongarra, Computer Science
Dept., Univ. of Tennessee, Knoxville, TN 37996-
1301; phone (615) 974-8295, fax (615) 974-
8296, Internet dongarra@cs.utk.edu.

Dhrystone

Weicker, R.P., “Dhrystone: A Synthetic Sys¬
tems Programming Benchmark,” Comm. ACM,
Vol. 27, No. 10, Oct. 1984, pp. 1,013-1,030.
Original publication, literature survey on the
use of programming language features, base
statistics and benchmark program in Ada.

Weicker, R.P., “Dhrystone Benchmark: Ratio¬
nale for Version 2 and Measurement Rules,”
SIGPlan Notices, Vol. 23, No. 8, Aug. 1988, pp.
49-62. Version 2.0 of Dhrystone (in C), mea¬
surement rules. For the Ada version, a similar
article appeared in Ada Letters, Vol. 9, No. 5,
July 1989, pp. 60-82.

Weicker, R.P., “Understanding Variations in
Dhrystone Performance,” Microprocessor Re¬
port, Vol. 3, No. 5, May 1989, pp. 16-17. What
customers should know when C-version results

of Dhrystone are compared; reiteration of mea¬
surement rules.

Contact: Reinhold P. Weicker, Siemens Nixdorf
Information Systems, STM OS 32, Otto-Hahn-
Ring 6, W-8000 Miinchen 83, Germany; phone
49 (89) 636-42436, fax 49 (89) 636-48008, In¬
ternet: weicker@ztivax.siemens.com; Eunet:
weicker%ztivax.uucp@unido.uucp.

Collection of results: Rick Richardson, PC Re¬
search, Inc., 94 Apple Orchard Dr., Tinton Falls,
NJ 07724; phone (201) 389-8963, e-mail (UUCP)
...!uunet!pcrat!rick.

Livermore Fortran Kernels

Feo, J.T., “An Analysis of the Computational
and Parallel Complexity of the Livermore Loops,”
see Reference 6. Analysis of the Livermore
Fortran Kernels with respect to the achievable
parallelism.

McMahon, F.H., “The Livermore Fortran Ker¬
nels: A Computer Test of the Numerical Per¬
formance Range,” Tech. Report UCRL-53745,
Lawrence Livermore National Laboratory,
Livermore, Calif., Dec. 1986, p. 179. Original
publication of the benchmark with sample results.

McMahon, F.H., “The Livermore Fortran Ker¬
nels Test of the Numerical Performance Range,”
in Performance Evaluation of Supercomputers,
J.L. Martin, ed.. North Holland, Amsterdam,
1988, pp. 143-186. Reprint of main part of the
original publication.

Contact: Frank H. McMahon, Lawrence Liver¬
more National Laboratory, L-35, PO Box 808,
Livermore, CA 94550; phone (415) 422-1647,
Internet mcmahon@ ocfmail.ocf.llnl.gov.

Stanford Small Programs Benchmark Set

Appendix 2—Stanford Composite Source Code,
Appendix to “Performance Report 68020/68030
32-bit Microprocessors,” Motorola, Inc., BR705/
D, 1988, pp. A2-1 — A2-15. This is the only
place I have seen this benchmark in print; it is
normally distributed via informal channels.

EDN benchmarks

Grappel, R.D., and J.E. Hemenway, “A Tale of
Four pPs: Benchmarks Quantify Performance,”
EDN, Apr. 1, 1981, pp. 179-265. Original pub¬
lication with benchmarks described in assembler
(code listings for LSI-11/23, 8086, 68000, and
Z8000).

Patstone, W., “16-bit-p.P Benchmarks — An
Update with Explanations,” EDN, Sept. 16,1981,
pp. 169-203. Discussion of results, updated code
listings (assembler).

Sieve

Gilbreath, J., and G. Gilbreath, “Eratosthenes
Revisited,” Byte, Jan. 1983, pp. 283-326. Pro¬

gram listings in Pascal, C, Forth, Fortran IV,
Basic, Cobol, Ada, and Modula-2.

SPEC benchmarks

“Benchmark Results,” SPEC Newsletter, Vol. 1,
No. l,Fall 1989, pp. 1-15. First published list of
results, in the report form required by SPEC.

Uniejewski, J., “Characterizing System Perfor¬
mance Using Application-Level Benchmarks,”
see Reference 8. This paper includes a short
characterization of each SPEC benchmark pro-

Contact: SPEC — System Performance Evalua¬
tion Cooperative (Kim Shanley, Secretary), c/o
Waterside Associates, 39150 Paseo Padre Pkwy.,
Suite 350, Fremont, CA 94538; phone (415)
792-2901, fax (415) 792-4748, Internet
shanley@cup.portal.com.

Reinhold P. Weicker is a senior staff engineer
with Siemens Nixdorf Information Systems AG
in Munich, Germany. His research interests in¬
clude performance evaluation with benchmarks
and its relation to CPU architecture and compiler
code generation. He wrote the often-used
Dhrystone benchmark while working on the
CPU architecture team for the i80960 micro¬
processor. Previously, he performed research in
theoretical computer science at the University
of Hamburg, Germany, and was a visiting as¬
sistant professor at Pennsylvania State Univer-

Weicker received a diploma degree in mathe¬
matics and a PhD in computer science from the
University of Erlangen-Numberg. He is a member
of the IEEE Computer Society, the ACM, and
the Gesellschaft fur Informatik.

The author can be contacted at Siemens
Nixdorf Information Systems AG, Otto-Hahn-
Ring 6, W-8000 Miinchen 83, Germany; Inter¬
net: weicker@ztivax.siemens.com; Eunet:
weicker%ztivax.uucp@unido.uucp.

December 1990 75

STANDARDS
Editor: Fletcher J. Buckley, 103 Wexford Dr., Cherry Hill, NJ 08003, phone (609) 866-6350, fax (609) 866-7753, Compmail II, f.buckley

Information technology standardization is key area of interest to IEE

Alasdair Kemp, Institution of Electrical Engineers

Standards-making involves a number
of agencies and processes in the United
Kingdom, as it does elsewhere. Interleav¬
ing takes place, and different organiza¬
tions assume various roles.

In the UK specifically, the British
Standards Institution, the national stan¬
dards authority, counts on volunteer par¬
ticipation in its technical committees to
fulfill its mission of developing stan¬
dards. The BSI rarely delegates its re¬
sponsibility to other bodies.

Similarly, the European Community
has its own standards authorities: Cen
and Cenelec. In addition. Directorate
General XIII of the European Commis¬
sion is responsible for developing EC in¬
formation technology.

In contrast to the American National
Standards Institute in the US, the BSI
takes on the task of providing secretariat
support for virtually all national stan¬
dards-making in the UK — rather than
delegating the task to other organizations
and then approving the resultant stan¬
dards. The actual drafting of standards
depends on the volunteer participation of
delegates from professional bodies, trade
associations, and — sometimes — gov¬
ernment departments.

Where information technology is con¬
cerned, the BSI has been found wanting.
To remedy this. Project DISC, a self¬
financing independent organization,
hopes to provide a new industry-funded
body for IT standards.

The nature of IT is driving standards
towards increasing internationality. This
is particularly true with respect to the ap¬
proaching introduction of the single Eu¬
ropean market in 1992. The European
Commission recently issued a consulta¬
tive document (Green Paper) containing
proposals for changes to the organization
of standards-making in Europe. It puts
forward the view that technical standards
are vital to the success of the single mar¬
ket.

It is widely believed that national stan¬
dards should be the same as international
standards promulgated through the IEC,
the ISO, and the IEC/ISO Joint Technical
Committee. This process of harmoniza¬

tion is both more essential and more prac¬
tical in IT than in other areas and is often
achieved by force majeure. The speed of
development and the short life cycle of IT
products affect other aspects of standards
development and consequently provide
the underlying bases for Project DISC.

Wiring Regulations, the definitive
standards for the electrical industry pro¬
duced and published by the Institution of
Electrical Engineers and widely used
throughout the British Commonwealth,
constitutes one of the exceptions to the
general rule of standards-making in the
UK. A small committee of IEE members,
called a working party, is considering the
role of the institution regarding stan-

The nature of information
technology is driving

standards towards
increasing

internationality. This is
particularly true with

respect to the approaching
introduction of the single

European market in 1992.

dards-making for all areas in which mem¬
bers are professionally involved. This
approach was embraced in response to a
suggestion that the IEE adopt a wider and
more active role in IT standardization.

IT standards and the IEE. The IEE is
deeply concerned with the entire IT field.
Its long-standing IT Standards Subcom¬
mittee operates under the direction of the
Computing and Control Division and, in
addition to providing the focal point for
IEE IT standards activity, undertakes
joint activities with other interested bod¬
ies.

The subcommittee is also responsible
for informing interested individuals of

standards and the benefits of their use, for
identifying gaps in standards provision
(the availability of a standard for a par¬
ticular purpose/set of circumstances),
and for taking initiatives to fill voids.

In part, this subcommittee operates
through working parties, some of which
have been concerned with documents
that are specified below. Working parties
currently function in the areas of com¬
puter systems architecture, open systems
in manufacturing, and dissemination of
information technology standards. An
IEE/BCS Joint Working Party on Soft¬
ware Engineering Standards is also ac-

The objective of the Computing Sys¬
tems Architecture Working Party is to
produce a general model that can provide
a framework to relate existing standards
and projects. The idea is to detect gaps.
This is a large undertaking, but progress
is being made.

The purpose of the Open Systems in
Manufacturing Working Party is to pro¬
mote awareness of appropriate standards
for manufacturing information formats
and disseminate manufacturing informa¬
tion around industry. This working party
focuses on small- and medium-sized or¬
ganizations with up to 500 employees.
The WP is taking a general approach,
starting with the documentation of initial
inquiries, proceeding with design and
manufacturing processes, and conclud¬
ing with post-scale and service documen¬
tation.

The need for interconnectivity of
equipment and transfer of data and soft¬
ware — that is, open systems — has pro¬
vided further motivation for interest in
standards. Despite this, some recent re¬
ports have shown that a remarkable igno¬
rance of open systems concepts exists,
even on the part of those who reasonably
might be expected to be knowledgeable.
We at the IEE hope that the working party
will produce documentation that will
help IT newcomers avoid piecemeal pro¬
curement of systems and software, a de¬
velopment that would inevitably lead to
incompatibility and unnecessary cost.

The aforementioned IEE/BCS JWP

76 COMPUTER

deals with software engineering stan¬
dards and has members from both organi¬
zations. In the past year, this JWP has
been largely concerned with software
safety standards. It has also been consid¬
ering the evaluation of computer-aided
software engineering tools, with particu¬
lar focus on whether the nature of the use
of the tools implies achievement of gen¬
eral engineering quality standards (such
as with BS 5750/ISO 9000, Quality Sys-

The IEE has taken a keen interest in the
work of IEEE PI209 (Recommended
Practice for the Evaluation and Use of
CASE Tools), is staying fully informed of
this body of work, and has offered to host
the summer 1991 IEEE PI 209 meeting.
The possibility of closer collaboration
between the JWP and IST/15, the BSI
Technical Committee responsible for
software engineering standards, is being
explored.

I will discuss the Working Party on
Dissemination of IT Standards later in
this article.

Membership of working parties is lim¬
ited to seven experts who are mainly —
but not necessarily — institution mem¬
bers. The working parties meet every few
weeks. In a number of cases, members of
larger consultative committees comment
on drafts of documents under prepara¬
tion. The role of the members of these
consultative committees appears similar
to that of IEEE balloting committee mem¬
bers, although they are procedurally less
formal. The consultative committees
meet infrequently, if at all.

Two units, the Information Engineer¬
ing Committee and the Safety Critical
Systems Committee, deal with general IT
policy matters for the institution. They
enjoy a good deal of cross-representa¬
tion, and both report to the IEE Public Af¬
fairs Board.

Standards services to members. The
IEE Technical Information Unit staff
members strive to keep abreast of devel¬
opments in IT standards, scanning rele¬
vant journals and accessing databases to
carry out customized searches for mem¬
bers at cost-effective rates. Of the 25 da¬
tabases from around the world dedicated
to standards information, the staff mem¬
bers mainly access two: the BSI Stan¬
dardline and IHS International Standards
and Specifications.

The BSI Standardline contains biblio¬
graphic references to all current British
standards, including drafts for develop¬
ment and drafts for public comment from
January 1986 to the present. The IHS da¬
tabase contains bibliographic references
to industry standards and to military and
federal specifications and standards cov¬
ering all aspects of engineering and re¬

lated disciplines. It contains information
from more than 70 US, foreign (for ex¬
ample, AFNOR in France), and interna¬
tional (for example, ISO) standardizing
bodies.

The IEE/BCS library, housed in the in¬
stitution’s headquarters, features a col¬
lection of standards, including IEEE,
BSI, IEC, and ECMA standards, plus
CCIR and CCITT recommendations.
Most are available for reference only.

Improving access to standards infor¬
mation. Unfortunately, few of the data¬
bases cover standards under develop¬
ment. For some time, there has been a per¬
ceived need to improve access to infor¬
mation about standards relating to IT.
The need is exacerbated by the preva¬
lence of de facto standards as opposed to
standards produced by recognized stan-
dards-making bodies and by the fact that
it can be more important to know about
emerging standards than about those that
have been formally adopted.

The Gavel Consortium, a Europewide
group of consultants, recently reviewed
European needs for information about
standards. It concluded that, while there
was generally insufficient interest in im¬
proving sources of information about
standards, a new, improved information
service related specifically to IT might be
useful and economically viable.

HITS (Database) Ltd. was established
in 1989 as an independent commercial
organization to meet the need for im¬
proved information about standards. It
intends to have two products, a handbook
of information technology standards and
a computer database that may be offered
on-line and via CD-ROM.

The IEE has had considerable influ¬

ence on the developments, although it has
only been involved in a monitoring role.
It has an observer on the HITS board and a
representative on its technical commit¬
tee, and it has established the Dissemina¬
tion of IT Standards Working Party to re¬
view progress. As this was being written,
it appeared the IEE might move toward
collaboration with one or more private
organizations that have established data¬
bases, in hopes of helping them provide
the kind of information and service con¬
sidered necessary.

Standards development. For its part,
the IEE first participates in the work of
outside bodies. It has been represented by
members and occasionally the secretariat
on BSI technical committees, and other
national and international committees
and working parties.

Second, IEE members comment on
drafts, proposals, and revisions. A cur¬
rent example is the Draft Interim Defence
Standards for Safety-Related Software
proposed by the UK Ministry of Defence.
Copies of the institution’s comments on
this draft (PAB(S) 201) may be obtained
from the IEE Public Affairs Board Secre¬
tariat. The draft has generated consider¬
able interest, mostly because of criticism
of the overemphasis on formal methods.

In addition to commenting on the pro¬
posed MOD Interim Draft Defence Stan¬
dards 00-55 and 00-56, the IEE published
a report in October 1989 entitled Soft¬
ware in Safety-Related Systems con¬
cerned with achieving assurance of
safety in systems incorporating software.
It was compiled by a joint IEE/BCS proj¬
ect management team and is available
from the IEE Publication Sales office.

The IEE monitors IEEE activities, es-

Glossary

ANSI American National Standards Institute
AQAP Allied Quality Assurance Publications (NATO)
BCS British Computer Society
BSI British Standards Institution
CCIR The International Radio Consultative Committee
CCITT International Consultative Committee for Telephone and

Telegraph
Cen The European Committee for Standardization
Cenelec The European Committee for Electrotechnical Standardization
ECMA European Computer Manufacturers Association
HIT Hierarchical Interconnection Technology
HITS Handbook of information technology standards
IEC International Electrotechnical Commission
IEE Institution of Electrical Engineers
IHS Information Handling Services
ISO International Organization for Standardization
IT Information technology
JWP Joint working party
MOD UK Ministry of Defence
Project DISC Project for Delivering Information Solutions to Customers

December 1990 77

pecially where they relate directly to the
activities of IEE working parties. It also
contributes to the IEEE computer stan¬
dardization process and sends delegates
to the US to participate in meetings. This
was particularly the case during the for¬
mative IEEE P896 process when the UK
provided the chair and a number of mem¬
bers, and carried out most of the editorial
work.

Many IEEE committees have active
UK members, and there are other more or
less formal contacts. As this article was
being written, comments were being pre¬
pared on the proposed standard for safety
plans and, as noted above, the IEE is look¬
ing forward to hosting the 1991 P1209
working group meeting on the evaluation
and selection of CASE tools.

Third, the institution may take an exist¬
ing industry or company standard and,
with appropriate modification where
necessary, make it available to a wider
audience.

Occasionally, the IEE will recognize
the need for a completely new standard.
Hierarchical Interconnection Technol¬
ogy is the most recent instance of this na¬
ture. HIT is being considered as a British
standard and eventually will be proposed
as an international standard. The basic
concept of HIT was to allow physical par¬
titioning of elements that would other¬

wise be put on a single printed circuit
board so that the individual elements
would be cheap enough to replace in the
field. From a standards-making view¬
point, the project involved the coopera¬
tion of a number of competing firms, sup¬
port from the UK government, indepen¬
dent evaluation, and secretariat support
from the institution.

More commonly, the need is for guide¬
lines. Four publications of interest to
software engineers are now available.
The Software Inspection Handbook is a
guide intended to help with the review of
software development in a relatively
early part of the development life cycle.

Guidelines for the Documentation of
Computer Software for Real-Time and
Interactive Systems is a second edition,
its changed title reflecting the wider
range of systems with which it now deals.
Much of the practice suggested is equally
useful in business and commercial data-
processing systems. Additional sections,
for example, relate to feasibility studies.
Other changes reflect suggestions that
users of the first edition made.

Software Quality Assurance: Model
Procedures contains procedures that
have been tested in use and have satisfied
the requirements of AQAP-1 and AQAP-
13. The procedures described are based
on top-down functional decomposition,

with programming in a procedural lan¬
guage such as C.

Guidelines for Assuring Testability is
designed to show how costs and delays
can be avoided if the need for testing is
taken into account at the earliest stages of
a project life cycle, as well as at all subse¬
quent stages. It also gives guidance on
how testability can be achieved. In addi¬
tion to discussing general principles, spe¬
cific sections deal with software, elec¬
tronics, and electromechanical products
and systems.

Conclusion. Compared to the ANSI,
the BSI takes a more centralized role rela¬
tive to IT standards. Although the IEE
sees the need for involvement in IT stan¬
dards and has the opportunity for in¬
volvement with these standards, the insti¬
tution does not currently provide secre¬
tariat support for this activity. Resources
available within the IEE for dealing with
IT standards are limited, and necessity
demands the institution be selective in
what it seeks to achieve.

IEE activity is also limited by the
availability of expert members willing to
participate in specific areas. Nonethe¬
less, IT standardization persists as one of
the institution’s major areas of interest
and continues to be important in relation
to achieving its overall objectives.

iiiiiiimiiiiiiiiiiiiii
Master of
Software
Engineering
at
Carnegie
Mellon
University

Reply MSE Admissions Coordinator
to CMU / SEI

Dept. D
Pittsburgh, PA 15213-3890

(412) 268-7713

Department of Computer Science

University of Minnesota

The Department of Computer Science at the University of Min¬
nesota invites applications for regular faculty positions in the areas
of theory, applied graphics, compilers, and systems. Highest priority
will be given to appointments at the full and associate professor
levels, although applications will be accepted at all faculty ranks.
Candidates for full and associate professorships are required to
have established a record of effectiveness in teaching and a repu¬
tation in scholarly research; candidates for assistant professorships
are required to have demonstrated teaching and research abilities.
Minimum academic qualifications for all ranks is an earned doctor¬
ate. Minimum teaching and research experience beyond the Ph.D.
is 3 years for associate professor and 6 years for full professor.

Non-regular positions as teaching specialists, lecturers, and
post-doctoral associates may also be available in all areas of
computer science.

Minnesota is a major center of the computer industry. The
Computer Science Department currently has 28 full-time faculty
members. The activities of the department are augmented by the
activities of the Minnesota Supercomputer Institute, the Microelec¬
tronics and Information Science Center, the Institute for Mathemat¬
ics and its Applications, and the Charles Babbage Institute for the
History of Information Processing.

Applications, including the names of at least four references,
should be sent to the Chair of the Faculty Search Committee,
Department of Computer Science, 4-192 EE/CSci Building, Univer¬
sity of Minnesota, 200 Union St., S.E., Minneapolis, Minnesota
55455. The closing date for receipt of applications is February 28,
1991.

The University of Minnesota is an equal opportunity educator and
employer and specifically invites and encourages applications from
women and minorities and persons with disabilities.

Reader Service Number 4

IEEE COMPUTER SOCIETY
Membership / Subscription Application

BENEFITS
Computer
You automatically
receive Computer with
membership. Written,
reviewed, and refereed
by experts, it features
survey and tutorial
articles covering the
entire computer field,
and departments such
as new products, pro¬
duct reviews, standards,
and a reader forum
called "The Open
Channel." (monthly).

Technical Committees
Participate in one or more of our 33 technical
committees — networks of professionals with common
interests in specialty areas within computer hardware,
software, and applications.

Standards Working Groups
Participate in the development of the more than 100
standards projects currently sponsored by the society
in such diverse areas as software engineering, local
area networks, microprocessor buses, design automa¬
tion, programming languages, and standards
definitions.

Computer Society Press Books and Videos
Receive discounts of up to 50% on over 700 titles
covering a broad spectrum of computer science topics
such as networking, communications, advanced
systems, image processing, security, artificial
intelligence, and visualization. Over 120 new products
are published annually.

Conferences and Tutorials
Choose from more than 100 conferences annually,
ranging from large industry-oriented conferences
replete with exhibits to small, highly interactive
workshops. Members receive special low rates.

Schedule of Fees
To join: see item 1, 2, or 3.
To subscribe: see item 4.

Membership dues and periodical subscriptions are annualized to, and expire on,
December 31. Pay full- or half-year rate depending on date of receipt by the
Computer Society as indicated below. Half Year Full Year

Mar 1-Aug 31 Sept 1-Feb 28

I don’t belong to the IEEE and I want
to join just the Computer Society

□ $27.00 □ $ 54.00

) I don’t belong to the IEEE and I want
■ to join both the Computer Society and the IEEE*

I reside in Region 1 -6 (United States). □ $52.50 □ $105.00
I reside in Region 7 (Canada). □ $48.50 □ $ 97
I reside in Region 8 (Europe, Africa, orthe Middle East) □ $48,00 □ $ 96
I reside in Region 9 (Latin America). □ $44.50 □ $ 89
I reside in Region 10 (Asia and Pacific). □ $43.50 □ $ 87
*ACM members who join both IEEE and the Computer Society may deduct $5 off the
full-year rate; $2.50 off the half-year rate.

(I already belong to the IEEE and I want
to join the Computer Society

IEEE Member Number_

□ $11.00 □$ 22.00

I OPTIONAL PERIODICALS for new or current members

IEEE Computer Graphics and Applications. .6 □ $12.00 □ $ 24.00
IEEE Design and Test. 4 □ $11.00 □ $ 22.00
IEEE Expert. .6 □ $10.00 □ $ 20.00
IEEE Micro. .6 □ $10.50 □ $ 21.00
IEEE Software. .6 □ $12.50 ' □$ 25.00
Transactions on:

Computers. ...12 □ $12.00 □ $ 24.00
Knowledge and Data Engineering .4 □ $ 7.50 □ $ 15.00
Parallel and Distributed Systems. .4 □ $ 7.00 □ $ 14.00
Pattern Analysis and Machine Intelligence ...12 □ $12.00 □ $ 24.00
Software Engineering. .12 □ $11.00 □ $ 22.00

Total amount remitted with this application $_

DC residents add sales tax to optional periodicals.
□ Checks accepted in Belgian, British, German, Swiss, Japanese, or US currencies.

Checks must be drawn on a bank in the country of origin of th ~

a □ Master Card □ American Express

' PRICES EXPIRE 12/31/91

........... rrrn
Charge Card Number (Minimi

’s and the society’s constitutions, bylaws, and statements of

MAILING ADDRESS

EDUCATION (highest level co

Return to: IEEE Computer Society, 10662 Los Vaqueros Circle, PO Box 3014, Los Alamitos, CA 90720-1264 USA. PC1290
Residents of Europe mail to: IEEE Computer Society, 13, Avenue de I’Aquilon, B-1200, Brussels, BELGIUM.
Asian/Pacific residents mail to: IEEE Computer Society, Ooshima Building, 2-19-1 Minami-Aoyama, Minato-ku, Tokyo 107 JAPAN.

8 8
 8

8

ADVERTISER INDEX PRODUCT INDEX

Alsys, Inc.7

ASIC ’91.9

CACI Products Company.1

CAIA ’91.110

Compcon’91 .10-11

Computer Processing of Chinese and Oriental Languages Conference.51

EDAC’91 .24

FTCS-21 .64

HNC.4-5

IEEE Computer Society Membership .79

IEEE Computer Society Ombudsman .8

IJCNN ’91.84

Massachusetts Institute ofTechnology.8

Northcon '91.63

Oakland Group, Inc.Cover III

Pace University .37

Phoenix Conference on Computers & Communications .Cover II

Software Engineering Conference.50

Software Engineering Institute.78

StarSys, Inc.12

University of Minnesota.78

University of North Carolina-Charlotte.97

USENIX Technical Conference .Cover IV

Classified Advertising.115-130

FOR DISPLAY ADVERTISING INFORMATION, CONTACT:

Northern California and Pacific Northwest: John D. Vance & Associates, Inc.,
4030 Moorpark Ave., Suite 116, San Jose, CA 95117; (408) 741-0354.
Southern California and Mountain States: Richard C. Faust Co., 24050 Madison
St., Suite 101, Torrance, CA 90505; (213) 373-9604.
Midwest: The Kingwill Company, 4433 W. Touhy Ave., #540, Lincolnwood, IL
60646; (708) 675-5755.
East Coast: Atlantic Representative Group, 349 Maple PI., Keyport, NJ 07735;
(908) 739-1444.
New England: Arpin Associates, P.O. Box 6444, Holliston, MA 01746;
(508) 429-8907.
Europe: Heinz J. Gorgens, Parkstrasse 8a, D-4054 Nettetal 1 - Hinsbeck (F.R.G.);
phone: (0 21 53) 8 99 88; fax: (0 21 53) 8 99 89.
Southwest/Southeast: Heidi Rex, 10662 Los Vaqueros Cir., PO Box 3014, Los
Alamitos, CA 90720-1264; (714) 821-8380.

For production information, conference, and classified advertising, contact Heidi Rex
or Marian Tibayan.

COMPUTER, 10662 Los Vaqueros Cir., PO Box 3014, Los Alamitos, CA
90720-1264; phone (714) 821-8380; fax (714) 821-4010.

RS#

Advanced Micro Devices 120

Alsys, Inc. 7,43

Analog Devices 121

Artisoft Inc. 24-26

AST Research 31

CACI Products Company —

Cirrus Logic 122

Dariana Technology Group Inc. 27

Datacap Inc. 22

Decision Data 38

Delrina Technology Inc. 28

Digitalk 36

Doctor Design 135

DP-Tek, Inc. 21

Hewlett-Packard 29,44

Hitachi 123

HNC 1

ICS Electronics 136

Ingres Corp. 37

Integrated Device Technology 124

International CMOS Technology 125

International Computers

Klever Computers

Maxell Corp.

Meiko World

Mercury

Mesa Electronics

Micro Focus

Micro Linear

MNC International

Motorola

Newer Technology

NMB Technologies

Oakland Group Inc.

Open Software Foundation

Precision Inc.

Reply Corp.

Ricoh

SBE

SGS-Thomson

Software Engineering Institute 4

Stac Electronics 45

StarSys, Inc. 3

Tetra Systems 41

Texas Instruments 30

Themis 143

Twinhead 130

Win Systems 144

Zeos International 145

PG#

98

7,97

98

98

90

85

95

90

95

99

85

92, 97

98

4-5

95

94

95

94

99

99

78

97

12

99

99

COMPUTER

I

Editorial comments

Hiked:

PO Box is for reader service cards only.

PLACE
POSTAGE

HERE

Idisliked:

I would like to see:

For reader-service inquiries, see other side.

COMPUTER
Reader Service Inquiries
PO Box 16508
North Hollywood, CA91615-6508
USA

II,I.. mil,II.Il,l,l„ll,„l,l,ll,„l„l,l,l„l

Editorial comments

Hiked: _

I would like to see:

For reader-service inquiries, see other side.

PO Box is for reader service cards only

PLACE
POSTAGE

HERE

COMPUTER
Reader Service Inquiries
PO Box 16508
North Hollywood, CA 91615-6508
USA

11,1.11,11.IU.I..II...I.I.II...I..I.I.I..I

Editorial comments

Hiked: _
PO Box is for reader service cards only

PLACE
POSTAGE

HERE

Idisliked:

I would like to see:

For reader-sen/ice inquiries, see other side.

COMPUTER
Reader Service Inquiries
PO Box 16508
North Hollywood, CA 91615-6508
USA

11,1.11,11, „ll,l,l„ll,„l,l,ll,„l„l,l,l„l

UPDATE
Contributions to Update are welcome. Send news of public policy or professional issues and of industrial or university research to Bob Carlson, 10662 Los Vaqueros Circle, PO Box 3014,
Los Alamitos, CA 90720-1264, or to Jon T. Butler, Associate Technical Editor, Naval Postgraduate School, Code 62-Bu, Monterey, CA 93943-5004, e-mail butler@cs.ece.navy.mil

Conflicts ensue over software “repossession,” termination of service

Bob Carlson, Staff Editor

The rights of users and vendors came
into sharp conflict recently in two cases
that may force a reassessment of current
practices in software licensing. In the
first case, a California court is being
asked to decide whether users of high-
priced custom software who fall into ar¬
rears on their payments will have to live
with the fear of a crippling phone call in
the middle of the night. The second case
involves the conditions under which a
provider of electronic communications
services is entitled to terminate service to
subscribers.

Lawsuit filed over software “repos¬
session.” On the night of October 15, Lo-
gisticon, Inc., of Santa Clara, California,
used telephone lines to disable inventory
control software at two warehouses be¬
longing to Revlon, the huge cosmetics
firm, over a payment dispute.

Revlon had canceled the second phase
of its agreement with Logisticon and was
withholding payment on a $ 1.2-million
contract, charging that the software did
not work properly. Logisticon claimed
that bugs in the system were minor and
did not interfere with operation.

According to Logisticon President
Don Gallagher, in a report by the Wall
Street Journal, Revlon demanded free
access to the source code in exchange for
the $180,000 still owing on the contract.
Logisticon employees dialed in and used
computer access codes to disable the soft¬
ware when “we determined we had no re¬
course remaining,” Gallagher said. He
added that the system was rendered inop¬
erable without harming Revlon’s data.

Three days later, Logisticon turned the
software on again. In the meantime, ac¬
cording to Revlon, daily sales activities
totaling millions of dollars came to a
standstill at the two distribution centers.

Subscribers charge censorship. Sev¬
eral subscribers to the Prodigy communi¬
cations service accused the firm of selec¬
tively terminating their service after they
used Prodigy’s electronic mail service to
enlist support for a revolt against in¬
creased charges by the company. Brian
Ek, a spokesman for Prodigy, told the Los

Angeles Times that the subscribers were
terminated because the mass mailings are
not allowed and amounted to harassment
of other members. Yet at least one discon¬
nected protester denied harassing anyone
or sending mass messages.

Protest coordinator Russ Singer ac¬
cepts Prodigy’s elimination of obsceni¬
ties or solicitations, according to the
Times, but he charges that “they are edit¬
ing the letters on the public bulletin board
for content.” He said that service to pro¬
testers was terminated after they revealed
the extent of their support against higher
fees to the service’s on-line merchants
and advertisers.

While declining to discuss specific
cases of harassment, Ek cited high usage
by subscribers and millions of dollars a
year in operating costs to justify the in¬
creases. “This is not like a car where you
buy it once and you own it,” he told the
Times. “It is a service.”

A collision of rights. It appears that
once again the legal profession is going to
be called on to bring order to a relatively
uncharted frontier that keeps expanding
with the growing capabilities of technol¬
ogy. In reference to the Revlon incident,
Robert J. Melford, who chairs a comput¬
ing ethics subcommittee for the IEEE
Computer Society, said it isn’t uncom¬
mon for vendors to include a “time bomb”
in their software scheduled to disable op¬
eration unless the vendor provides a key
upon mutual agreement to extend the con¬
tract. Of course, all this should be stated
up front so that it is clear to both parties.

The current case takes this concept a
step further, however, and the outcome
will depend in part on what was explicit in

Citing the evolution of business prac¬
tices detrimental to the entire industry,
the newly formed Software Business
Practices Council defined its goal as pro¬
moting ethical business practices and

the contract between Logisticon and
Revlon and whether the vendor violated
its access privileges. “This area isn’t well
defined yet in law,” added Melford,
whose firm, Robert J. Melford Associates
in Mission Viejo, California, consults in
project management for systems analy¬
sis, design, integration, and security.

In the Prodigy case, Melford said, the
issue hinges on who has the right to inter¬
pret the word “harassment.” If the Prod¬
igy service is dominant enough to be con¬
sidered a monopoly, it might be classified
as a utility rather than as a business. This
would mean that ultimately an outside
agency could be charged with regulating
it for the public good.

Tim Headley, a patent law attorney
with the firm of Baker and Botts, pointed
out that a customer is subject to the loss of
a software license if found to be violating
its provisions. Pertinent questions in the
Logisticon case are whether the firm had
authorized permission to log in and what
that permission covered. He added, how¬
ever, that the law allows an authorized
agent to do anything except “breach the
peace” in executing a repossession.

Get it in writing. Melford sums up the
current situation as a combination of
separate issues that have been dealt with
individually but never together. So while
the ethics and legalities of “reposses¬
sion” tactics and termination of service
are being argued in court, and no doubt
throughout the computer industry, cus¬
tomers are expected to start paying more
attention to their contracts. Users of cus¬
tom software, in particular, will want to
specify in advance what dial-in access
does and does not allow.

higher business standards.
“Neither the best people in the world

nor the most spectacular technological
achievements can ever overcome the
damage to a reputation tarnished by dubi-

Council formed to support
software industry integrity

December 1990

ous business practices,” said Jeffrey P.
Papows, chair of the new council and
president and chief operating officer of
Cognos, Inc.

Chief among the problems identified
by Papows are announcements of “va¬
porware,” insupportable and misrepre¬
sented marketing claims, and inconsis¬
tent reporting of software vendors’ fi¬
nancial information. “Unless the soft¬
ware industry stops alienating and con¬
fusing customers and engendering
cynicism, the reputation of the indus¬
try as a whole will deteriorate and
growth will suffer,” Papows said.
“Clear lines of ethical behavior should
be drawn by those of us in this industry,
rather than by those who stand outside
it and are less likely to appreciate its
needs and dynamics.”

The council offered several specific
recommendations:

• Recognition by software vendors
of distinctions between a product an¬
nouncement and a statement of direc¬
tion.

• Use of present and future standards
in software product performance mea¬
surement.

• Support for efforts to achieve inex¬
pensive user verifiability of vendor im¬
plementations of product performance
measurement standards.

• Truthful, accurate, and verifiable
explanation of product performance
measurement standards in any com¬
parative marketing and advertising
claim.

• Public adherence to present and fu¬
ture standards of the Financial Ac¬
counting Standards Board of the Finan¬
cial Accounting Foundation, and the
American Institute of Certified Public
Accountants (AICPA).

• Software industry vendor review of
AICPA’s proposed position statement
on software revenue recognition. Com¬
panies are urged to submit comments
about the content to both the AICPA
and other regulating organizations.

The Software Business Practices
Council is a nonprofit trade associa¬
tion. The founding member companies
are AI Corp., Ashton-Tate, Banyan
Systems, Chipcom, Cognos, Datame-
dia, Digital Equipment Corporation,
Hewlett-Packard, Ingres, Intec Con¬
trols, Integral, Interleaf, Lotus Devel¬
opment, Multiview, Price Waterhouse,
Ross Systems, and Sybase.

Members of the software vendor
community are invited to participate
by contacting Papows at Cognos, Inc.,
67 South Bedford St., Burlington, MA
01803, phone (617) 229-6600, ext.
441.

C°S5SNEWS
Editor: Guylaine M. Pollock, Sandia National Laboratories, Division 1424, P0 Box 5800, Albuquerque, NM 87185;
phone, (505) 846-0040; Internet, gmpollo@sandia.gov

Society members elect new officers
and board members

Results have been announced in the
IEEE Computer Society’s fall 1990 elec¬
tion. Voters chose Bruce D. Shriver to
serve as president-elect for 1991 and
president in 1992. He will succeed Dun¬
can H. Lawrie, the society’s 1991 presi¬
dent. The results, with the number of
votes received shown after each name,
were as follows:

President-elect:
Bruce D. Shriver (elected) 6,553
Joseph E. Urban 4,209

Vice presidents. Paul L. Borrill was
elected first vice president and Barry W.
Johnson was elected second vice presi¬
dent. Both will serve one-year terms be¬
ginning January 1. Voting results were as
follows:

First Vice President:
Paul L. Borrill (elected) 6,852
Gerald L. Engel 3,681

Second Vice President:
Barry W. Johnson (elected) 5,583
Mario R. Barbacci 4,764

Board of Governors. Seven of the 12
candidates for the Board of Governors
were elected to serve three-year terms
beginning January 1. The results and the
number of votes received were as fol¬
lows:

Elected to three-year terms (1991-93):
Anneliese von Mayrhauser 6,303
Fiorenza Albert-Howard 6,196
Benjamin W. Wah 6,095
Yale N. Patt 5,878
Ronald Waxman 5,076
Michael C. Mulder 4,901
Jon T. Butler 4,674

Not elected:
Joseph Boykin 4,648
Donald E. Thomas 4,582
Akihiko Yamada 4,572

Bruce D. Shriver (left) was chosen as president-elect for 1991 and will serve as
Computer Society president in 1992. Duncan H. Lawrie, current president-elect,
starts his term as president January 1.

82 COMPUTER

Table 1. Comparative statistics for recent Computer Society elections.

Election Year 1985 1986 1987 1988 1989 1990

Ballots mailed 65,210 66,896 64,121 73,862 77,882 80,845
Ballots returned 9,314 10,080 9,047 10,110 10,263 11,174
Percent responding 14.3 15.1 14.1 13.7 13.2 13.8

Michel Israel 4,193
Charles B. Silio 3,974

Constitutional amendments. The
suite of three constitutional amendments
regarding presidential succession (Com¬
puter, Sept. 1990, p. 93), which required
for votes by two thirds of the members
voting, passed by a vote of 9,689 for and
681 against.

Member participation in elections.
The rate of participation by eligible vot¬
ers was up slightly for this year’s elec¬
tion. Table 1 shows participation figures
for the past six years.

IEEE election. As a result of the recent
IEEE election, current Computer Society
President Helen M. Wood will serve as
Division VIII delegate-director on the

IEEE Board of Directors for a two-year
term beginning in 1991. Balloting results
were as follows:

Division VIII Delegate-Director:
Helen M. Wood 6,156
Bill D. Carroll 3,755

Board of directors dissolves AFIPS

The Board of Directors of the Ameri¬
can Federation of Information Process¬
ing Societies voted at its October 13,
1990, meeting to dissolve the federation,
effective immediately.

The IEEE Computer Society and the
ACM, through their members on the
AFIPS Board of Directors, took the lead
in the organization’s dissolution. In a
joint statement. Computer Society Presi¬
dent Helen M. Wood and ACM President
John R. White affirmed the need for col¬
lective representation of US computing
interests in the International Federation
of Information Processing (IFIP). How¬
ever, such representation “demands a
federation very different from the AFIPS
that has existed in the past ... or even
the AFIPS that would exist if its . . .
structure and direction were to be re¬
tained,” they stated.

AFIPS was created in 1961 as an um¬
brella organization of national computer
societies representing the computing
profession. It was best known for spon¬
soring the National Computer Confer¬
ence (which ceased operation in 1987)
and as the American representative to
IFIP.

Wood emphasized that the move to dis¬
solve AFIPS was a positive step in the his¬
tory of joint professional computing ac¬
tivities in the United States. “We’re sim¬
ply abandoning an organizational form
that served us well in the past but which
required redesign for the 1990s and be¬
yond,” said Wood.

A computing federation of the future,
as described by Wood and White, would

not be involved in the dissemination and
interchange of technical information,
and its member organizations would not
see it as a means for producing resources
to support their own activities.

The Computer Society and ACM plan
to sponsor a new organization that will
enable US members of computing socie¬

ties to take part in IFIP programs and ac¬
tivities. All eligible computing societies
wishing to participate in these activities
will be invited to join. Each society would
pay only the costs directly associated
with their participation, and the new or¬
ganization will not be organized as a
source of funds for any activities.

Friends, associates mourn passing of Toy

Wing N. Toy, a member of the IEEE
Computer Society Board of Governors
and a long-time society volunteer, passed
away Saturday, October 27.

In recent years. Toy served on Com¬
puter's, editorial board, as an associate
technical editor for IEEE Transactions
on Computers, and on the IEEE Ad Hoc
Accreditation Visitors Committee. For
his service to the society, he received the
Meritorious Service Award in 1984 and
the Certificate of Appreciation in 1987.

Toy, an IEEE fellow, was a supervisor
in the Advanced Switching Networks
Department at AT&T Bell Laboratories
in Naperville, Illinois, where he was in¬
volved in the design of highly reliable
processors for telecommunication appli¬
cations for 36 years. He was named an
AT&T Bell Labs fellow in 1983. He held
27 US patents and was coauthor of three
textbooks on computer technology.

The family suggested that, in lieu of
flowers, donations could be made to the

American Cancer Society. The collection
is being administered by Jill Leannah,
AT&T Bell Laboratories, 200 Park Plaza,
Indian Hill - IU203, Naperville, IL
60566.

December 1990 83

INNS
INTERNATIONAL
NEURAL NETWORK
SOCIETY

Thi' Official Airline
sinciAPorce airlities %

IJCNN'91 SINGAPORE
INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS

WESTIN STAMFORD & WESTIN PLAZA - SINGAPORE, NOVEMBER 18-21,1991

Catf For ‘Papers
CONFERENCE
The TF.F.F. Neural Networks Council and the International Neural Networks Society (INNS) invite all persons interested in the

field of Neural Networks to submit FULL PAPERS for possible presentation at the Conference.

FULL PAPERS must be received by 31 May 1991. All submissions will be acknowledged by mail. Authors should submit

their work via Air Mail or Express Courier so as to ensure timely arrival. Papers will be reviewed by senior researchers in the

field, and all papers accepted will be published in full in the Conference Proceedings. The Conference hosts tutorials on Nov

18 and tours arranged probably on Nov 17 and Nov 22, 1991. Conference sessions will be held from Nov 19-21, 1991.

Proposals for tutorial speakers & topics should be submitted to Professor Toshio Fukuda (address below) by Nov 15,1990.

TOPICS OF INTEREST

Original, basic and applied papers in all areas of Neural Networks & their applications are being solicited. FULL PAPERS

may be submitted for consideration as oral or poster presentations in (but not limited to) the following sessions:

• Associative Memory

•Electrical Neurocomputer

• Image Processing

• Invertebrate Neural Networks

• Machine Vision

• Neurocognition

• Neuro-Dynamics

• Optical Neurocomputers

• Optimization

• Robotics

• Sensation & Perception

• Sensorimotor Control System

• Supervised Learning

• Unsupervised Learning

• Neuro-physiology

• Hybrid System (AI, Neural

Networks, Fuzzy System)

• Mathematical Methods

• Applications

31 May 1991

31 Aug 1991

AUTHORS’ SCHEDULE
Deadline for submission of FULL PAPERS (Camera ready)

Notification of acceptance

SUBMISSION GUIDELINES

Eight copies (One original and seven copies) are required for submission. Do not fold or staple the original, camera-ready

copy. Papers of no more than 6 pages, including figures, tables, and references, should be written in English and only

complete papers will be considered. Papers must be submitted camera-ready on 8 1/2” x 11" white bond paper with 1”

margins on all four sides. They should be prepared by typewriter or letter quality printer in one-column format, single spaced

or similar type style of 10 points or larger and should be printed on one side of the paper only. FAX submissions are not

acceptable. Centred at the top of the first page should be the complete title, author name(s), affiliation(s) and mailing

address(es). This is followed by a blank space and then the abstract, up to 15 lines, followed by the text. In an accompanying

letter, the following must be included:

Presentation preferred:

Oral
Poster

Corresponding author:

Name
Mailing Address
Telephone & FAX number

For submissions from Japan

send to:

Professor Toshio Fukuda

Programme Chairman

IJCNN'91 SINGAPORE

Dept of Mechanical Engineering

Nagoya University, Furo-cho, Chikusa-Ku

Nagoya 464-01 Japan.

Fax: 81-52-781-9243

Technical Session:
1st Choice
2nd Choice

For submissions from USA

send to:

Ms Nomi Feldman

Meeting Management

5565 Oberlin Drive, Suite 110

San Diego CA 92121.

Fax: 619-535-31

Presenter:

Name
Mailing Address
Telephone & FAX number

For submissions from rest of the world

send to:

Dr Teck-Seng, Low

IJCNN' 91 SINGAPORE

Communication Inti Associates Pte Ltd

44/46 Tanjong Pagar Road

Singapore 0208

Tel: (65)226-2838

Fax: (65) 226-2877, (65) 221-8916

PRODUCT REVIEWS
Editor: Richard Eckhouse, UMASS-Boston, Harbor Campus, Boston, MA 02125, Compmail II, r.eckhouse; Bitnet, eckhouse@umbsky; CompuServe, 70516, 556

A holiday parade of products

Every year we fill the contents of our December column with a number of
products we judge suitable for stuffing into your holiday stocking. We continue
this tradition with a new set of items that we hope will surprise and delight you.

How to label nearly everything

Lift Off is one of those products that is
both simple and elegant, a product that
any one of us could have made — if only
we had the smarts to think of it. It’s easy
and fun to use, quickly enhances your
presentations, and produces very profes¬
sional results.

What is it? Lift Off is a professional
lettering system that you can use on file
folders, charts, technical drawings, pro¬
posals, blueprints, newsletters, note¬
books, diplomas, and just about anything
you can think of. It consists of software
that produces horizontal or vertical let¬
tering, special paper, transfer tape, and
burnishing tools.

To run “3-2-1 Lift Off,” you’ll need an
IBM PC or compatible, 320 Kbytes of
memory, a graphics display card, a hard
disk, and a laser printer that is PCL-com-
patible. The software is menu driven,
with menu entries keyed to the PC’s 10
function keys. A mouse is a useful but
unnecessary option for selecting items
from the menu.

The program always starts in edit
mode. The main menu appears at the top
of the screen, and a tape window in the
middle of the menu provides a preview
of how the Lift Off tape will look when
it is printed. An edit window at the bot¬
tom of the screen allows you to enter and
edit the tape text.

Selecting a menu item by pressing a
key or highlighting it with the mouse
causes another menu to appear that offers
further choices. The PC’s standard cursor
keys let you move within the edit win¬

A computer that makes

Handwritten character input to com¬
puter applications has been the illusive
goal of those trying to offer forms that
are easy to fill in. This is not to mention

dow and change from insert to replace
mode.

The main menu items allow you to set
type attributes. These specifications vary
from serif or block font in normal or bold
(with a horizontal or vertical orientation)
to a point size from 6 to 60. You can also
load and save previous text, set up and
use the laser printer, place a border
around text that can be underlined and
printed as a normal or an inverse image,
adjust the space between characters (both
manually and automatically), clear the
text window, and exit to DOS. Maximum
length for a tape is limited to letter-size
paper, but within that working limit you
can produce any combination of letters
and symbols in various type faces, sizes,
degrees of boldness, and orientations.

The Lift Off paper is specially coated
on both sides; the laser toner does not
adhere to it. A tape message prints on the
left side of the page, allowing you to turn
the paper around for a second printing, or
over for two more passes. Since each of
the four printing areas can be used from
three to six times, an estimated yield of
12 to 24 copies per sheet is possible.

Having printed a message on the page,
it is a simple matter to select one of the
transparent tapes (essentially cellophane
tape in two widths and two types: clear
or frosted) to apply over the message and
accept the toner. A burnishing tool and
pad are included within the kit. A nice
touch is that the burnishing pad includes
samples that show off most of the fea¬
tures I’ve mentioned. The transfer tape

the hurdles associated with producing ac¬
curate recognition and compatibility with
other software applications. Solutions
have been relatively expensive up to

does not stick to the Lift Off paper so—
after burnishing the toner into the tape—
you peel it off and apply it to the object
to be lettered.

All of this reminds me of the Kroy let¬
tering system, but what makes this one
so much more clever is that the toner is
applied to the sticky or bottom side of
the transfer tape, rather than the top as in
the other system. The results are thus
much less likely to be scratched off, even
with heavy use.

While the basic system comes with
serif and block lettering, as well as seven
special symbols, a Lift Off font pack in¬
cludes three additional fonts and a col¬
lection of 93 special symbols. At $49,
the font pack is worth the extra cost to
the base price of $89 for the Lift Off kit.
For another $49, you can purchase a sup¬
plies pack that includes 50 additional
sheets of Lift Off paper, another burnish¬
ing tool, and six more rolls of Lift Off
tape. (You may not need those 50 sheets
immediately because you are treated to
an additional 12 sheets as an inducement
to returning your registration card.)

The instruction guide that comes with
the product is well done and includes
many screen shots, detailed instructions,
and an index. I have no doubts that this
is a useful product. I already have found
dozens of ways to use it. Contact DP-
Tek, Inc., 3031 W. Pawnee, Wichita, KS
67213, phone (800) 727-3130, to order a
copy. — R. Eckhouse

Reader Service 21

now, requiring special hardware and
software that often runs on machines
considerably bigger than PCs. Datacap
is in the process of changing that with

and reads questionnaires

December 1990 8-9162/90/1200-0085S01.00 © 85

Paper Keyboard, a package that makes it
easy to design forms, fill them in, scan
and validate the results automatically,
and export the data to popular databases.

Paper Keyboard is an interesting blend
of almost all the right ingredients in a
package that runs on either the Macin¬
tosh or an IBM PC/compatible. In the
case of the PC version, reviewed here,
Paper Keyboard harmoniously marries
Windows 3.0 with the features of a GUI
word processor (I used Ami Pro) and the
HP Scan Jet — in one $895 package. It is
so easy to use that I went from reading
the manual to producing useful results in
just a couple of hours.

Typically, when you set up a comput¬
er-readable form, you start by thinking
about entry fields and check boxes. The
entry fields are for names, addresses,
dates, phone numbers, and questions that
require more than a yes or no response.
Here Paper Keyboard recognizes the al¬
phanumeric characters along with five
punctuation characters including the
comma, period, slash, dash, and apostro¬
phe. But when all you need is a yes-or-
no, one-from-many, or even many-from-
many (such as marking all that apply) re¬
sponse, a check box is offered as an al¬
ternative. And when your response is
“other” and you want to write in an un¬
anticipated response, Paper Keyboard of¬
fers you operator-filled-in fields; that is,
fields that will be keyed in by the person
processing the form.

Once you have developed a form, the
next step is to use a word processor or
desktop publisher to actually produce it.
While it would be nice if you could pro¬
duce a formless form, reality requires
that the form have specific fields that are
fixed rigidly on the page. In the case of
Paper Keyboard, data is entered into
rectangular boxes called dominos be¬

cause they contain two dots that help the
user align the character to be written. A
string of domino characters makes up a
field and usually has associated text
nearby to indicate what is to be filled in,
such as a last name or zip code.

The two dots or eyes within the domi¬
no serve as the discriminators for cor¬
rectly recognizing a character. Still, there
can be particular difficulties with the let¬
ter O and the numeral 0; U and V; S and
5; M, N, and W; and A and R. In fact, the
number 1 and the letter I are only distin¬
guished in an alphanumeric field by their
position relative to the two eyes (the I is
to the left of both eyes, and the 1 appears
to the right).

Paper Keyboard supports this process
of making up a form by including six
fonts in sizes of 16, 20, 24, 30, and 36
points. They are installed in Windows
through the control panel and are used
both for on-screen display and for print¬
ed laser output of the actual form. These
sizes are appropriate for cramming a lot
of fields onto the form and allowing easy
user entry into the fields. The font set in¬
cludes both dominos and check boxes,
and each can be empty or filled. Empty
fields serve for data input, while filled
fields offer guidance in how characters
are to be written in. Finally, anchors or
cross hairs are placed on the form so the
system can register the page and correct
for tilted or off-center scans.

After producing the form, the next step
is to create a form specification, or the
Form Spec, which tells Paper Keyboard
how to scan the form by locating fields
and check boxes. It also helps validate
the entry information, such as numerics
in an alpha field or more than one box
checked when only one is allowed. The
Form Spec is like a C program and pro¬
vides details about the form size, field

locations, data exporting, and condition¬
als for field checking.

As with everything else about Paper
Keyboard, you realize that the designers
made every attempt to offer flexibility
with ease of use. In the case of the Form
Spec, however, they really let us down
with regard to specifying where fields
are located on the form. You literally
have to take out a ruler and measure each
form and field in the form in tenths of a
millimeter to determine how big the form
is, where the anchors are located, and
where each field coordinate begins and
ends. Clearly, the graphical interface of
Windows on which they built this prod¬
uct should have made it a snap to gener¬
ate this portion of the Form Spec. Since
Paper Keyboard displays where it thinks
these fields are by superimposing Form
Spec locations on the form, it is surpris¬
ing that the contents of the Form Spec
cannot be changed by using this infor¬
mation.

Once a form is filled in, the next step
is to scan it in and recognize the many
fields, checking the boxes that comprise
a form. This is where Paper Keyboard
comes into play. Using a familiar Win¬
dows display, Paper Keyboard offers
four icons on the left of the screen and
five menu items across the top. The icons
are used to open the Form Spec, scan a
form, recognize the contents of the form,
and zoom in or magnify the scanned im¬
age. The first three steps can be automat¬
ed with a sheet-feeding scanner.

Two conditions cause Paper Keyboard
to pause: when the program tries to rec¬
ognize a character and comes up with a
confidence level below some preset val¬
ue, or when an operator field must be
keyed in from a handwritten, user-sup¬
plied field. Editing and accepting each
character or field is easy, greatly aided
by the zoom capability; the Form Spec
selects what is to be displayed when
Paper Keyboard pauses for human inter¬
vention.

After accepting the fields within a
form, the operator exports the data for
use in some external program or data¬
base. Again, the Form Spec is used to de¬
lineate how the data is exported. At the
present time, Paper Keyboard does not
support any particular database or
spreadsheet, and instead puts out the re¬
sults as pure ASCII strings. Depending
on how you look at this, it can be a bless¬
ing or a pain.

Paper Keyboard is an exciting product.
It’s an intelligent way to use existing re¬
sources to solve the problem of hand¬
written input to a computer. The recogni¬
tion software works well as long as those
who fill in the form remember to print
the characters in the style that the soft¬
ware requires. In terms of thorough sys-

86 COMPUTER

tern documentation and completeness of
the product, the folks at Datacap have
done their homework. I think that I will
hold out until they automate the Form
Spec process and offer an integration

A perfect 10

Measured in terms of versatility, ver¬
sion 1.2 of Super Base 4 rates a 10. Not
only does Super Base 4 provide in Win¬
dows 3.0 all the features of a mainframe
relational database management system,
but it does so while maintaining the sim¬
plicity of a PC flat-file database system.
It also supports the Windows 3.0 DDE
protocol, references graphics and text
files, and imports data from a variety of
spreadsheets — as well as dBase II and
III databases. The program offers a secu¬
rity system to control who can read,
write, or delete data. And, finally, it
comes with a full-featured forms editor.

A Super Base 4 database is a mostly
flat file. Each database has a fixed num¬
ber of fields of three different types:
character strings, numbers, and date
times. Character strings can range from
one to 4,000 characters. There are a num¬
ber of filters that can be set to make sure
that the data has a consistent format.
These filters can convert the input data to
a variety of formats (including all upper
case and all lower case), capitalize the
first word in the field, or capitalize every
word in the field. Strings are stored in
the database at their actual length so
there is no wasted space when a short
string is stored in a long field.

Numbers, except money, are stored
with 14 digits of accuracy. However,
they can be displayed with any number
of digits to the right and left of the deci¬
mal point and with a wide range of for¬
mats such as leading or trailing zeros,
sign to the right or left of the number,
negative numbers in parentheses, or even
a comma for use in numbers that have
more than three digits.

Numbers with a display format that
specifies two digits to the right of the
decimal point are considered money.
Money is stored with this format to pre¬
vent rounding errors. Each number can
be displayed with a currency sign or a
percent sign. The currency sign used in
the database can be changed to any char¬
acter that you want. Dates can be dis¬
played with a space, slash, comma, hy¬
phen, or period as the separator. The
order of the year, month, and day can
change. The year can be represented as
two or four characters. The month can be
a number, three character abbreviations,

path into some of the more popular data¬
base systems. From what I can gather,
both are in the works and may well be
available by the time this review appears.

You may reach Datacap Inc. at 5 West

or fully spelled out. A time can be asso¬
ciated with the date, can include milli¬
seconds, and can be displayed in a 12- or
24-hour format.

I described the database as “mostly”
flat because there are a few bumps. A
character string can be treated as the
name of a file. This file displays in a sep¬
arate window and can be either a text or
graphics file. The graphic formats sup¬
ported are IMG, PCX, TIFF, and WMF.
Text files can be searched for key words
just like text fields. Another bump is that
character fields may be repeated. Multi¬
ple instances of the same field in a single
record can occur, for example, in a de¬
pendent’s field in an employee record.
The only limitation is that the total
length of all instances cannot exceed
4,000 characters.

The product also contains extensive
tools for linking several databases. A da¬
tabase can display data from another data¬
base and use it to validate user input or in
calculations for virtual fields. Virtual fields
are calculated when the record is displayed;
they are not stored in the database.

Database creation is straightforward.
A series of dialogue boxes guides you
from the database path entrance (by
means of password selection) to field
definition to index selection. You can
also modify the database structure at any
time. You can add fields, delete them, or
change their data type. When a data type
changes, any existing data is converted.
When the data in a field cannot be con¬
verted to the new type, the field’s value
is set to null.

Super Base 4 has an easy-to-use and
consistent user interface. Its main claim
to fame is the row of buttons at the bot¬
tom on the window. These buttons re¬
semble the controls on a VCR. Super
Base 4 treats each record like a frame in
a VCR tape, and you can play the “tape”
either backward or forward — sort of
like the VCR search mode. The time that
each record displays can be adjusted to
match the record length and your reading
speed. Some buttons (like the filter and
redisplay buttons) do not have any VCR
equivalents. I found that the interface
was not as intuitive as advertised, but
was nevertheless easy to learn and use.

There are three built-in display modes:

Main St., Elmsford, NY 10523, phone
(914) 347-7133. —R. Eckhouse

Reader Service 22

table, page, and record. A forms mode
displays forms that you build with the
Super Base 4 editor. The table mode dis¬
plays one record per line; it’s the tradi¬
tional flat-file view. Record mode dis¬
plays one record at a time in the window.
Each field has its own line in the win¬
dow. Page mode starts out like record
mode, but you can point to a field and
move it around on the page. The new set¬
up is recorded for use the next time the
database is displayed in page mode. It’s a
very simple forms editor. Forms mode
displays a form built with the editor. It
allows you to draw lines and boxes
around groups of fields, position titles,
and fields anywhere on the page and con¬
trol the color and fonts with which the ti¬
tles and fields are displayed.

For people who would rather write
programs, Super Base 4 contains a very
powerful data-manipulation language.
This DML can be used to create or modi¬
fy a database structure or insert, search,
and update data. It includes an if-then-
else structure, gosub, and for and while
statements. You can also define local
variables. There are even statements for
querying the user via a dialogue box and
displaying messages or records so that
the programs are interactive.

I found the technical support for Super
Base 4 to be very good. However, you
only receive 30 days of free support, and
the clock starts when they receive your
registration card. I didn’t need much
technical support. Between the well-writ¬
ten manuals, the 11-lesson tutorial, and a
very good hypertext-like help system, I
could figure most things out.

The only real problem I found was im¬
porting dBase III databases with memo
fields. There is no way to import the
memo text into the Super Base 4 data¬
base. Instead, you get the memo index
number. If it weren’t for my large invest¬
ment in dBase III databases with memo
fields, I would be using Super Base 4
now. As it is, I plan to use it for any new
applications.

Super Base 4 is available from Preci¬
sion Inc., 8404 Sterling St. A, Irving, TX
75063, phone (214) 929-4888, at a list
price of $695.— N. Davids

Reader Service 23

December 1990 87

Artisoft’s Fantastic Lantastic

Computer was one of the first maga¬
zines to review Artisoft’s Lantastic net¬
work operating system (NOS) and the 2-
Mbps adapter card (see the August 1988
issue, pp. 90-91). Reviews have followed
concerning the Network Eye and NOS
updates (December 1989, pp. 81-90).
Each review rated Artisoft as fantastic
and praised it as an outstanding value
that results from offering features found
in much more expensive products at a
price that anyone could afford. Equally
important, my reviews have marvelled
that NOS can run as a server with a small
amount of memory (less than 40 Kbytes)
or as a workstation with a miniscule 12
Kbytes. Taking less room than many
popular TSRs, NOS runs transparently as
a nondedicated server in a typical appli-
cations-based environment. Thus, a sepa¬
rate and expensive machine does not
have to be dedicated to providing all sys¬
tem resources, and every machine can
function equally well as a computing en¬
gine and a server.

Other independent reviews have also
recognized Artisoft and heaped praise on
the company, rating it a best buy and se¬
lecting it as an editor’s choice. And, all
the while, Artisoft has continued to de¬
velop and release a host of new hardware
and software. In this review, I cover ver¬
sion 3.0 of the Lantastic NOS, the Lan¬
tastic voice adapter, and the high-perfor¬
mance 8/16-bit Ethernet adapter called
the AE-2. Each one continues to rate as
an outstanding value.

Lantastic NOS, V. 3.0

Even from the beginning, Lantastic
NOS was packed with a variety of fea¬
tures not found in other “low-end” pack¬
ages. I particularly liked that NOS could
run in the background and also run all of
my standard applications such as word
processing, spreadsheet, graphics, and
schematic capture programs. I could op¬
erate NOS from the extensive command
options that could be invoked in three
ways: (a) from the command line, (b)
from the set of menus that came with the
Net and Net_Mgr programs, or (c) as a
pop-up utility called LANPUP. Equally
impressive was the full set of security
controls along with audit trails for con¬
trolling network access. Of course, none
of that has changed, but so much has
been added in version 3.0 that this re¬
lease is well worth the $50 upgrade fee
for licensed users.

What are the changes? First, in this
latest version, automatic installation gen¬
erates the necessary changes to your

CONFIG.SYS file as well as builds a
startup batch file that both gets the net¬
work going and logs you into other
nodes. The process is accomplished by
running the install program and answer¬
ing a few questions regarding what you
want done and what nodes you want to
automatically log into when you start up
NOS.

Second, the NOS manual has been
completely revised and split into two
sections that are bound together. The us¬
er’s manual is short (approximately 50
pages) and covers just what you need to
get started. The reference manual is more
than 200 pages and covers everything in
greater detail. It is organized so that sep¬
arate sections cover each of the functions
and features to be found in NOS. The ap¬
pendices cover such topics as improving
network performance, setting up batch
files to start up the nodes in the network
(workstations or servers), and testing the
network adapters. They also cover trou¬
ble shooting and list all the various sys¬
tem and error messages. Both manuals
contain a table of contents and an index.

Third, there are a number of perfor¬
mance enhancements. While this seem¬
ingly brief description hardly does ver¬
sion 3.0 justice given the significance of
these enhancements, I think you will get
the idea. These improvements include

• despooling to more than one printer
simultaneously (a feature generally
reserved for the larger systems if
found at all);

• moving the printer spool area to a
faster disk, including a RAM disk;

• increasing the size of the network
print buffers to speed up printing;

• caching software to speed up disk
accesses with parameters to set the
size, location, write delay, etc.;

• clearing the printer spool area with
one command rather than deleting
each file individually;

• redirecting serial printers at the serv¬
er rather than using the mode com¬
mand; and

• bypassing the DOS restriction of 255
open files by allowing you to open
up to 5,100 files per server.

Fourth, network security has been en¬
hanced by

• limiting user access to certain hours
on certain days,

• setting expiration dates for both
passwords and accounts,

• allowing backup and restoration of
your control directory (where infor¬
mation about user accounts and serv¬
er resources is kept),

• using indirect files that point to a file
in another directory, and

• providing password protection for
the Net_Mgr program along with
context-sensitive help using the FI
key (a feature also found in the Net
program as well).

Lantastic NOS also allows you to cre¬
ate multiple control directories so that
you can have completely different user
accounts and resources.

Fifth, additional functions and features
are

• a pop-up email notification as well as
a single-line message (like “phone”
or “talk” utilities found in other net¬
works),

• remote booting with the new AE-2
Ethernet card or the enhanced ver¬
sion of the 2-Mbyte/s boards (so
diskless workstations do not even
require a floppy to boot up), and

• improvements to LANPUP, the TSR
utility that offers the features of the
Net program (as a single line rather
than as a menu-driven program),

By the way, LANPUP can be also run
as a stand-alone program if you cannot
spare the 5 Kbytes it takes as a TSR.

I should point out two caveats. One is
that you will need DOS 3.1 or higher to
run NOS. The other is that NOS no long¬
er operates as a server under Windows
3.0 in enhanced mode. In the latter case,
it worked just fine under Windows 2.1,
but the latest version does not seem to be
compatible with this fine network operat¬
ing system. I’m not sure whose problem
it is, but I do hope that Microsoft and
Artisoft find a solution.

Lantastic Voice Adapter

This small card operates in 8-bit mode.
It digitizes voice using a sample rate of
approximately 8 kHz. Compression cuts
storage requirements in half without seri¬
ously compromising recognition. The
board uses DMA channels 1 and 3 to
provide full-duplex operation (such as si¬
multaneous record and play). Either or
both channels can be disabled, but you
cannot run Voice Chat if the DMA chan¬
nels are disabled.

When the board and Lanvoice soft¬
ware are installed, the Chat utility allows
the user to record and play back voice-
mail messages. You can be notified of
incoming mail via a pop-up note, and
you can use the Net menu system to play
or record messages. A special screen for

COMPUTER

voice mail operates in record, play, or
pause modes and shows the message size
in both bytes and minutes/seconds. Play¬
back operates almost like a cassette re¬
corder in that it can fast forward and re¬
wind in steps of small, large, or 2-second
increments

There is a separate Lantastic Voice
Programmers Interface (VPI) that in¬
cludes the commands necessary to pro¬
vide direct support in applications. The
eight basic commands are

• status (to find out about the voice
adapter),

• reset (to initialize the adapter),
• deinstall (to remove the software

from memory),
• cancel (to remove a pending voice

control block),
• send (to transmit a play channel

buffer),
• silence (to send silence to the play

channel),
• receive (to accept a record channel),

and
• threshold (to wait for a sound to

reach a certain loudness before be¬
ginning to receive from a record
channel).

The VPI is sold separately for $195.
Record and Say utilities included with

the adapter allow you to record and play
back voice messages, which can then be
embedded in other programs. For a test, I
used Say within a Quick Basic program
to prompt for input and then acknowl¬
edge if the required input was within a
specified range. Another test was to
make it part of the AUTOEXEC.BAT
file so that the machine verbally prompt¬
ed me when it was through with the boot
procedure. Both worked easily and pro¬
duced excellent results.

The $149 price for the product in¬
cludes the board, a telephone handset and
coiled cord, and the network software
and utilities. In addition to the external
connector for the telephone handset, two
phono jacks for line in/out lines allow
connection to an external microphone/
amplifier.

This handy, versatile board offers
voice for both network and nonnetwork
applications. Operation is extremely sim¬
ple and fully documented in the small us¬
er’s manual that comes with the board.

AE-2 Ethernet board

The latest network board for Artisoft
is the AE-2 Ethernet card that runs at a
full 10 Mbps and complies with the
802.3 standard. The board automatically
switches from 16-bit to 8-bit modes

Lantastic Ethernet Adapter AE-2 board.

when placed in an 8-bit slot, or you can
force it into 8-bit mode by using one of
the jumpers on the board. Other jumpers
are set to specify the IRQ line (2-7, 10,
or 15), the DMA channel (1, 3, 5, and 7,
but currently not supported), the I/O port
address for the 32-byte I/O space used by
the adapter (300h, 320h, 340h, or 360h),
and the Ethernet type (Cheapernet using
an RG-58 coaxial cable or Ethernet using
Ethernet transceivers). The jumpers also
specify the boot ROM for diskless work¬
stations, the Cheapernet segment length
(165 or 300 meters with a limit of a sin¬
gle segment if 300 meters long), non¬
standard bus selection for machines with
incompatible bus timings, and NE2000
emulation to allow the use of Novel soft¬
ware such as TCP/IP or Netware.

If you want to use coax and repeaters,
the maximum cable length is 185 meters
with 30 adapters per segment. You can
extend it to 300 meters if you give up the
need for repeaters and hence 802.3 com¬
pliance. If you switch to 10Base5 mode
in which you use an Ethernet transceiver,
you can achieve a 500-meter cable length
and up to 100 nodes per segment.

The board comes with 16 Kbytes of
RAM that can be expanded to 64 Kbytes
as an option. A second option priced at
$99 includes the boot ROM for diskless
workstations (unfortunately, I did not get
to test this). A $725 starter kit includes
two AE-2 boards, Lantastic’s NO$, AL¬
LAN BIOS (the adapter independent ver¬
sion of Artisoft’s LAN BIOS), 25 feet of
coaxial cable, terminators, and full docu¬
mentation. Additional boards are priced
at $349. A Micro Channel version will
be available after the first of the year.

In testing the system, I plugged the
AE-2 cards into the same machines with
the older 8-bit Ethernet adapters in¬

stalled, cabled up the systems, and ran
the same Lantastic NOS software I had
been using. The only noticeable change
was that everything ran at least twice as
fast! I have to admit I didn’t run any per¬
formance tests, but it was clear that the
16-bit data path to the board and the
higher data-transfer rates do make for
noticeably speedier transfers.

Like all the boards I have reviewed
from Artisoft, the AE-2s are well made
and compact. About the only thing one
could suggest to Artisoft is to combine
the Voice Adapter with the AE-2 on the
same card so that you don’t have to give
up two slots to install them both.

Summary

My personal computing environment
has grown to include four machines: an
8086, a 286, a 386, and a 386 laptop (and
a 486 will be added shortly). Without
question, I find that a LAN is necessary
for the transfer of data between ma¬
chines. In fact, it makes economic sense
because I would have to add disks and
printers to each new machine if I contin¬
ued to operate in a stand-alone fashion.
In addition, the floppy disk situation
would require multiple drives on each
system. Also, since I use tape to back up
my hard disks, I’d have to throw in those
costs as well.

With Lantastic, I gain in several ways.
First, there is the expense mentioned
above. Second, there is the question of
slots and space. Either I don’t have any
slots left in a machine, or I don’t have
room next to the computer for a printer.
With Lantastic, I can tailor each node to
the space within the machine and around
it. Finally, there is the convenience of

December 1990 89

sharing applications and data between
machines. This means a lot less duplica¬
tion and a lot more free disk space. Thus,
even if you have needs for a small LAN,
such as I have, the price/performance of
a Lantastic system makes good sense; I
don’t think you will find anything like it
anywhere else.

But there are other reasons to go with
Artisoft. Obviously the company is con¬
tinually developing newer and better
products. These products generally re¬
place older ones with better performance
at the same price. The company also
seems tuned in to customer needs. For

Inside Windows 3.0

When running Windows 3.0, have you
ever wondered if your display board re¬
quires scaling support? Or how much lin¬
ear space is under DPMI management?
Or the size of the code or data blocks of
the currently running tasks? No? Well, I
have to admit I haven’t either, but all this
information and much more is available
about using Win Sleuth from Dariana
Technology Group Inc., 6945 Hermosa
Circle, Buena Park, CA 90620, phone
(714) 994-7400, fax (714) 994-7401.

Win Sleuth is the latest diagnostic
software package from a family of such
products that includes a similar package
for PC/MS-DOS and even the Macin¬
tosh. Version 1.0 reviewed here includes
11 modules that describe general system
information, power-on.In status, hard
disk characteristics, display attributes,
MS-DOS information, memory alloca¬
tion sizes, printer characteristics, alloca¬
tion of system memory (between 640
Kbytes and 1 Mbyte), information on
Windows, network characteristics, and

example, it now offers free, unlimited
technical support to registered end users,
doing away with the older plan that re¬
quired you to get support from the sell¬
ing dealer or pay $100 per year for direct
support. And most important, Artisoft of¬
fers full-featured products at prices less
than you would expect to pay; you get
the functionality of the higher priced sys¬
tems at rock-bottom prices.

As you can tell, Artisoft is tops on my
list of suppliers of LAN equipment. I
have recommended the company without
reservation. Feedback from users who
took my advice has been overwhelming¬

finally suggestions for improving Win¬
dows’ performance.

The amount of information provided
depends on the sophistication level you
set (novice, intermediate, or advanced).
The colorful Windows display makes it
easy to select which or all of the modules
you wish to run, along with a choice of
where to present the information (on the
screen or to the default printing device).

In some cases, the information provid¬
ed is generally known by the user, or is
readily available. In other cases, it is in¬
formation you might need to know but
can’t figure out how to find. So, while
most users will know they have a 286 or
a 386 and what floppy drives are in¬
stalled, they may not know if a math
coprocessor is present or what the base
addresses are for their serial and parallel
ports. And while they may not care about
how many Windows tasks are running,
knowing how real mode segments from
C000-FFFF are used can be awfully im¬
portant if you have a network or I/O card

State of the art in forms packages

Most of us are not form designers, but
we are form “fillers.” Expense reports,
tax payments, insurance claims —what
have you. We fill them in all the time.
While filling out these forms, we often
wonder whether we could design better
ones. With Per Form from Delrina Tech¬
nology, you can design the form and au¬
tomate filling it in, thus simplifying the
process, automating record keeping, and
generating very professional results.

Of all the products I have reviewed, I
have spent the most time on Per Form.
Not because it’s complex or difficult to
master. Quite the contrary. Per Form is
easy and fun to use, well documented.

complete, and very provocative. Therein
lies the problem: I can’t seem to tear my¬
self away from this software.

I started out looking at an earlier ver¬
sion of Per Form that ran under the
GEM/3 environment. I immediately liked
what I saw but held off my review until
the latest version, Per Form Pro, became
available. This version runs under Win¬
dows 3.0, my favorite windowing envi¬
ronment, with the result that what was
good before seems spectacular now. You
have full Windows support plus a little
bonus: You get a copy of Agfa Compu-
graphics Type Director with two type¬
faces (and hence multiple fonts). In addi¬

ly enthusiastic. Thus, I, too, add to the
chorus of users who rate Artisoft boards
a best buy and the number one choice
when it comes to LAN systems. In fact,
in expanding my system, I bought the ad¬
ditional adapters. What better recommen¬
dation than that can I give?

Readers may contact Artisoft, Inc. at
Artisoft Plaza, 575 E. River Rd., Tucson,
AZ 85704, phone (602) 293-6363, fax
(602) 293-8065. —R. Eckhouse

NOS Reader Service 24
Voice Adapter Reader Service 25

Board Reader Service 26

filling the space — and causing Win¬
dows to crash often. Things like knowing
the DPMI memory statistics may not be
important now, but with more and more
new programs trying to cash in on Win¬
dows memory management, it can sud¬
denly become very important when
things go haywire.

Win Sleuth is easy to install and use. It
includes a brief — but complete — user’s
manual and on-line, context-sensitive
help. You won’t use this program often,
but its value will be evident when it saves
you from opening up your box to find out
just what is under the hood. This is particu¬
larly true when you add new options, both
software and hardware, to your machine.
My only complaint about Win Sleuth is that
it retails for $149, which I find a bit expen¬
sive in comparison to other packages. A
very nice feature is that it runs in any
mode that Windows runs in: real, stan¬
dard, or enhanced. — R. Eckhouse

Reader Service 27

tion, printing speed has been greatly im¬
proved, and sophisticated security fea¬
tures have been added. Also new are
form folders and multipage forms. With
the inclusion of color, object grouping,
and a sophisticated set of calculation
functions, designing forms is quite easy.
And, filling out the form as well as link¬
ing it to dBase and ASCII file formats is
easier. It is, put simply, a flawless imple¬
mentation of a high-end system that ap¬
pears to be designed by users for users.

But here I go telling why I like it even
before I tell you what it is. For those of
you unfamiliar with a form designer, let
me say it is a combination of a graphics

90 COMPUTER

program and a database application. In
the forms designer, you have both the
menu bar and the tool box. The tools in¬
clude the pointer to select menus, com¬
mands, options, objects, and areas. The I-
beam tool selects where you want to
insert or highlight text. The Line tool
comes in two forms: one to draw lines at
any angle and the other to restrict them
to the horizontal or the vertical axis. You
create boxes with the Box tool, which
also comes in two forms, one with square
and the other with rounded comers. Like¬
wise, the Text area tools are for text in¬
serted as a part of the form or for text to
be filled in using the forms filler. A
Graphic tool creates the frame into
which you can import TIFF, IMG, PNT,
PCX, GEM, BMP, WMF, and EPS im¬
ages. Interestingly enough, you can im¬
port a graph in traceable form, allowing
you to recreate it by drawing on top
of it.

These tools should already be familiar
to users of most paint programs. What’s
unusual and necessary for the form de¬
signer are the Comb and bar code tools.
The Comb tool creates rectangular ob¬
jects with multiple, evenly spaced parti¬
tions (horizontal or vertical) that can be
patterned (like green bars on printer pa¬
per) and enclosed within a border. The
bar code tool creates bar codes (in eight
popular formats) that are bound during
the design of the form or are created
when the form is filled in.

The menu comes into play during the
design process. The File menu includes
the usual stuff common to Windows pro¬
grams plus the capability to lock down a
form (that is, save it in a form that can’t
be changed) and merge one form with
another form. When you save a form you
can also use the form information button
to fill in the name of the designer, title,
version, last revision date, and a form de¬
scription. I’m beginning to see this fea¬
ture in a number of Windows products,
and I hope that others will follow suit be¬
cause it alleviates the dependence on the
archaic eight-character name and three-
character extension for a DOS file.

The Edit menu is pretty typical but
also lets you select all objects within the
form. The Object menu allows you to
display the attributes of, duplicate, posi¬
tion, align, repeat, lock, move to the
front/back, make nonprintable, and bor¬
der an object. There are secondary dia¬
logue boxes for most of these commands,
and the content of each depends on the
object selected. The alignment command
is set up to aid in aligning objects by top,
bottom, left, right, and vertical/horizontal
center. When you select an object, its
type is shown on a separate line below
the menu line along with the page num¬
ber for the form (useful for multipage

forms) and an asterisk indicator that lets
you know when the form has been modi¬
fied but not saved.

The View menu essentially lets you
choose what is displayed on the screen,
set preferences, and zoom in or out of
your form. You use the Text menu to set
how the text looks, is aligned, and is ori¬
ented. This menu also allows you to load
text that was created externally. A
thoughtful touch here is that the font dia¬
logue box, as well as the position dia¬
logue box from the Object menu, are
“sticky.” This means they remain on the
screen until you close them. Thus, you

Of all the products
I have reviewed,

I have spent the most
time on this one.

can change and set fonts or positions,
with results immediately available, even
when working with a different menu.
Now that shows off the power of a
graphical interface!

The Fill menu specifies how the user
is to fill in the form. A large number of
decisions must be made here, from se¬
lecting field formats to an extensive set
of calculations (like mathematical, logi¬
cal, string, and financial operations) to
the order for fields to be filled in. The
Line menu includes standard or custom
line widths that are either solid or pat¬
terned. The Shade menu determines the
color of lines, backgrounds, and fore¬
grounds, as well as fillable text, graphics,
and bar codes. Notice that when a form is
filled in, a unique graphic or bar code is
generated from the user-supplied text.

The form filler is a separate program,
callable from the file menu of the form
designer (and vice versa). Menu choices
include File, Data, Edit, View, Locate,
Security, and Info. The file, edit, and
view commands are similar to those
found in the form designer. Data com¬
mands save, retrieve, and manipulate
data files. The Locate commands are
used to move through data records.
Searching can occur on strings or by in¬
dices. Security commands control the ac¬
cess to specified forms and fields, as set
up by the form designer. The Information
commands provide customized form
help, generalized program help, and lists
of valid entries for fields. The combina¬
tion of the Data, Locate, and Information

commands makes the filler pretty power¬
ful in terms of adding, modifying, and
retrieving dBase files. When combined
with linked fields within a folder, the re¬
sult is akin to having an underlying rela¬
tional database.

The manual set for this product is
equally impressive. One manual, called
Getting Started, explains Per Form and
describes the installation process (which
is automatic). The manual also goes
through running Per Form and printing
results, working with fonts, and network¬
ing. Appendices cover common prob¬
lems, printing tips, and using Type
Director.

The Form Designer manual is equally
as thorough and covers the concepts of
form design and using form designer,
and includes a four-lesson tutorial. This
manual also serves as a reference manual
because it explains everything from the
toolbox to the menu commands. Per
Form supplies a large number (around
100) of sample forms that are useful for
exploring the tutorial. These forms also
serve as templates for you to make your
own forms.

Finally, a smaller Form Filler manual
offers chapters that contain a fast track
for beginners and a list of commands,
plus how to use the form filler. Tutorial
lessons can also be found in this manual.

All manuals are indexed and well laid
out, so it is easy to find specific help
when you need it.

I used Per Form to design and print out
an expense sheet for my company and
for the two conferences I serve as trea¬
surer. Like all good users, I avoided
reading the manuals at first, only refer¬
ring to them when I got stuck. I found
the extensive on-line help system equally
useful. In no time at all, I had some pret¬
ty fancy results printed out on my Kyo¬
cera laser and a burning desire to create
more such forms. Whatever I wanted to
do could easily be done, following the
law of least astonishment: Things happen
the way you think they should. Every
time I thought of something that had
been left out, a quick trip to the manual
showed me that the designers had
thought about it so that it had been built
into the product.

Even after pretty extensive testing, a
great many features remained that I nev¬
er got around to using. One example is
the folder feature that lets you store mul¬
tiple forms within a folder so you can
create an application with all the forms
linked to the same database. Another is
the security feature that locks forms and
even fields within a form so one set of
users can enter data while another can
approve the information that is already
filled in. Also, I did not test Per Form
within a network environment. In fact.

December 1990 91

there is so much here that I doubt I will
ever get to use all the features and func¬
tionality offered.

As far as I’m concerned, Per Form Pro
is leading edge when it comes to both
form design and form completion. It’s a
powerful, sophisticated package that is a
steal at $495. An interesting accessory is
the US Government Forms package,

Top-of-the-line scanner

One of the little pleasures of being a
reviewer is that you often have a chance
to try products as a result of having re¬
viewed other products. Such was the case
with Paper Keyboard, reviewed in this
issue, which utilizes the Hewlett-Packard
Scan Jet Plus for input. I have often
heard how well others like the Scan Jet,
but I have never had the opportunity to
actually use it. Having now done so, I
can say I am very impressed and have re¬
ally come to appreciate the HP quality
embodied in this fine product.

Outwardly there doesn’t seem to be
much to a scanner. The unit is relatively
compact (being smaller than either of my
printers) and has no knobs or buttons ex¬
cept for an on/off switch. It simply at¬
taches to an interface card that you insert
into an empty slot in your computer.
Since the Scan Jet Plus can be attached
to either a Mac or a PC, the interface kit
is sold separately and comes complete
with the necessary cable. In my case, I
attached the scanner to a PC by follow¬
ing the detailed and illustrated manual
that comes with the interface card. Hav¬
ing done so, I next installed the software
that comes with the scanner, checked out

which includes 60 of the most commonly
used DoD forms that Delrina claims are
“precisely laid out to government speci¬
fications.” But even if you don’t need to
design or fill in forms, you should look
at this product as one of the best exam¬
ples I’ve reviewed on how to create soft¬
ware. It is well designed and thoughtful¬
ly implemented, includes no surprises,

my installation with the test target and
Scantest software that come with the
unit, and immediately used the system
with the Paper Keyboard software. Ev¬
erything worked perfectly.

But there is a lot more to this package
than just using it as an accessory. The
software that comes with the scanner ac¬
tually includes two separate pieces,
Scanning Gallery Plus 5.0 and HP Paint¬
brush. Both are installed into Windows
(versions 2.11 or 3.0) and operate as
window applications. Essentially, the
Scanning Gallery package is the software
equivalent of the knobs and buttons I
spoke of earlier. With this software you
can set the image type (line art, halftones,
diffusion, and gray scales), the resolution,
scaling, brightness and white/black levels,
and so on, to produce the best image.

Menu selections across the top include
zooming, printing, effects, and options.
The effects menu includes mirror and
negative selections, while the printing
menu options produce a page that either
demonstrates different exposure settings
or halftone image samples. Judging by
some images I’ve obtained with other
scanners, the Scan Jet Plus wins hands

makes efficient use of the user’s time,
and produces very professional results.

You can reach Delrina Technology
Inc. at 15495 Los Gatos Blvd, Unit No.
8, Los Gatos, CA 95032, phone (800)
268-6082, fax (408) 356-9570. — R.
Eckhouse

Reader Service 28

down in the quality of reproduction —
and that’s using the automatic setting. I
probably could have done even better if I
had manually adjusted some the options.

Scanned images can be saved in a
number of formats, including TIFF,
PCX, EPS, MSP, and IMG. The images
can be saved as a fde or passed to HP
Paintbrush for further work. HP Paint¬
brush is a lot like the PC Paintbrush that
comes with Windows 3.0, only it’s much
better for several reasons. Right off the
bat, it has a better human interface, even
though it is only subtly changed (like set¬
ting the line width) from that found in
PC Paintbrush. HP Paintbrush is also
much more versatile because it includes

• more menu options (like filtering an
image);

• control of font characteristics (such
as gradient, shadow, and intercharac¬
ter and interline spacing); and

• support for 256 colors.

Since the software is included free of
charge, it’s a really nice bonus.

In all ways, the scanner and the software
are top rate. About the only other thing
worth mentioning is that the otherwise ex¬
cellent manual is a bit terse when discuss¬
ing the detail of HP Paintbrush. Surpris¬
ingly enough, nowhere could I find a sum¬
mary of the characteristics of the scanner
(that is, the number of gray scales, the maxi¬
mum size of an image to be scanned, and
extra cost options like the sheet feeder).

As many readers know, the Scan Jet
Plus is “the” scanner most often support¬
ed by other software vendors, which
makes it easy to justify owning one. In
my case, there is no question about want¬
ing to own this scanner. But quality
doesn’t come cheap. The list price for the
scanner is $1,595, with the interface sep¬
arately priced at $595 for either the Mac
or the PC. Fortunately, considerably low¬
er street prices can make this highly rec¬
ommended scanner a product of choice.

Contact Hewlett-Packard, 700 71st
Ave., Greeley, CO 80634, (303) 350-
4687. — R. Eckhouse

Reader Service 29

Moving?

PLEASE NOTIFY
US 4 WEEKS IN
ADVANCE

Name (Please Print)

MAIL TO:
IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

• This notice of address change will apply to all
ATTACH IEEE Publications to which you subscribe.

’ List new address above.

If you have a question about your subscription,
place label here and clip this form to your letter.

92 COMPUTER

NEW PRODUCTS

Texas Instruments Travel Mate 3000 notebook computer.

Notebook computer
features the 386

The Texas Instruments Travel Mate
3000 notebook PC features a 20-MHz
386SX processor; a 10-inch-diagonal,
black-and-white VGA display; and a 20-
or 40-Mbyte hard-disk drive. The unit
weighs 5.7 lbs. with battery and mea¬
sures 8.5 x 11 x 1.8 inches. An internal
1.44-Mbyte drive uses 3.5-inch floppy
disks.

The computer keyboard contains 79
keys with an embedded numeric keypad
and a dedicated cursor control pad. Users
may run Windows or other graphics ap¬
plications on the display, which has a
resolution of 640 x 480 and 32 gray
scales.

Travel Mate comes with MS-DOS
V. 4.01, the Laplink data-exchange pro¬
gram, and battery checking and conser¬
vation programs. A removable, recharge¬
able Nicad battery powers the system for
about three hours; an AC adapter/
recharger is also included.

A Centronics-type parallel interface
and an RS-232 serial port provide com¬
munications. Other interfaces are provid¬
ed for an external monitor, a PS/2 mouse
connector, and an external numeric key¬

Desktop PC has i486 power

The Bravo 486/25 PC from AST Re¬
search reputedly runs nearly twice as fast
as 33-MHz 386 systems.

The PC’s integrated board includes
logic, up to 16 Mbytes of memory expan¬
sion, Super VGA graphics (800 x 600
resolution), and an integrated drive elec¬
tronics interface connector. Weitek co¬

pad. Options include a 2,400-baud mo¬
dem that can send faxes, an 8037SX nu¬
meric coprocessor, and expandable
RAM.

Suggested list price for the Travel

processor support, one parallel port, two
serial ports, and five full-size, 16-bit ex¬
pansion slots are also provided.

A standard system includes 2 Mbytes
of memory, AST MS-DOS 3.3, built-in
password security, and support for four
drive bays.

The chassis measures 15.5 x 6.25 x 16

Mate 3000 is $5,499 for the 20-Mbyte
hard-disk-drive model and $5,999 for the
40-Mbyte version.

Reader Service 30

inches deep. The front panel has a power
switch, reset button, speed indicator, and
chassis lock.

Prices are from $3,995 to $5,365, de¬
pending on the disk drives selected and
memory capacity.

Reader Service 31

Workstations offer extended memory, upgrade options

Reply Corp. has developed a series of
32-bit Micro Channel architecture work¬
stations and extended memory options.
Models 386/25, 25C, and 33C, and mod¬
els 486/25 and 33 are built around a Tur¬
bo Processor module that contains micro¬
processor and math coprocessor sockets
with associated logic. Systems can be up¬

graded by changing the Turbo Processor
module. The 486/25 and 486/33 models
contain an 8-Kbyte cache and a math cop¬
rocessor.

The overall design includes five disk-
drive bays and five full-length expansion
slots that accept standard Micro Channel
option cards. The system board integrates

a 4-Mbyte system memory (expandable
to 16 Mbytes), extended VGA graphics,
two parallel and two serial ports, and
keyboard and pointing-device ports.

Prices range from $3,995 for a 386/25
system to $12,895 for the 486/33.

Reader Service 32

December 1990 93

Computers targeted for engineering and real-time applications

Meiko’s Computing Surface systems support multiple users running multiple
tasks and permit processors to be assigned to specific tasks.

Meiko World’s two new Computing
Surface systems are scalable multipro¬
cessor, multiuser computers for engineer¬
ing/scientific and real-time applications.

The parallel processor systems support
from two to thousands of processors that
may come from different vendors yet op¬
erate together, allowing users to match a

job to the type of processor best suited
for the task.

The two systems are called the Engi¬
neer’s Computing Surface and the Em¬
bedded Real-Time Computing Surface.
The Engineer’s Computing Surface is de¬
signed for application developers work¬
ing on simulation, modeling, design,
analysis, and other engineering and sci¬
entific applications. A typical entry-level
system consists of four Inmos T800
Transputer central processors, 1 Mbyte
per processor of memory, eight expan¬
sion slots, Surfaceware parallel develop¬
ment software, and a Fortran or C com¬
piler.

The Embedded Real-Time Computing
Surface is designed to be part of a larger
deployed system for applications such as
command, control, and communications/
intelligence, and radar and sonar image
analysis, data acquisition, and industrial
control. An entry-level system includes
two Intel i860 processors, each with 4
Mbytes of memory; eight expansion
slots; and targetable Surfaceware devel¬
opment software.

The company’s Surfaceware software
is designed to enable programmers to
write application code in Fortran or C in
a familiar Unix environment. Sur¬
faceware builds parallel programs on the
“communicating sequential processes”
model, which lets programmers treat an
application as a set of ordinary sequen¬
tial routines that exchange data through
Surfaceware’s message-passing library
routines. A debugger for single- and mul¬
tiprocessor applications is included.

The entry-level systems cost $35,000
for the Embedded Real-Time Computing
Surface and $50,000 for the Engineer's
system.

Reader Service 33

Sparc-based servers support Unix System V. 4.0

International Computers’ DRS 6000
servers combine Sparc RISC technology
with a symmetrical multiprocessing oper¬
ating system. The series features a 33-
MHz Sparc chip with an on-board float¬
ing-point coprocessor.

Two servers are available: dual proces¬
sor and four processor. Both provide
symmetric shared-memory multiprocess¬
ing across networks with many users and
mixed work loads.

The series features Posix and X Open
Portability Guide Issue 3 interface stan¬

dards, Sparc Applications Binary Inter¬
face compliance, and support for stan¬
dard networking facilities.

The DRS 6000 servers include dual¬
bus and multiple-cache architectures and
hardware cache coherency. They use a
40-Mbyte-per-second VMEbus for I/O
and a 133-Mbyte-per-second high-speed
private bus for CPU and memory traffic.
According to the company, the 128-
Kbyte write-back memory caches enable
CPUs to run at maximum clock speed
and minimize contention for the HSP

bus. A 64-Kbyte cache on the central ser¬
vices module provides a data path for
VMEbus-initiated transfers to memory.
The hardware bus-watching logic ensures
date integrity in multiple caches.

The servers also feature up to 128
Mbytes of main memory, support for up
to 19 Gbytes of SCSI unformatted disk
storage, and 31 VMEbus expansion slots
for I/O controllers.

DRS 6000 pricing starts at $150,000.

Reader Service 34

94 COMPUTER

WORM disk stores 7 Gbytes of data

Maxell Corp.’s 12-inch, 7-Gbyte
optical storage disk features a 1.5-
micron track pitch and the zoned con¬
stant angular velocity recording meth¬
od. The OC321-2, designed to operate
with Hitachi’s OD-321, runs at 1,000
rpm and transfers data at 2.2 Mbytes/
per second.

Digitalk announced Smalltalk V Win¬
dows, an object-oriented programming
environment combined with Microsoft
Windows 3.0. The company says that
Smalltalk V simplifies graphic environ¬
ment subsystems by providing classes
that hide details.

In addition to original Smalltalk V fea¬
tures, such as browsers, inspectors, and
push-button debuggers, the product in-

Color workstation operates
in IBM environments

Decision Data’s 3697 workstation
functions in IBM System 34, 36, 38, or
AS 400 environments in both 80- and
132-column applications. It emulates
IBM 5292, 3197C, and 3197D termi¬
nals and IBM 5219 and 3812 printers.
The workstation also emulates the
Hewlett-Packard Laserjet II and IBM
Quickwriter.

The workstation features a 14-inch,
seven-color Super VGA monitor, key¬
board reprogrammability, and an on¬
screen interactive calculator. When em¬
ulating the 3197C or 3197D, the
workstation features two or three termi¬
nal sessions and one system-addressed
printer session. The 3697 also features
two simultaneous emulations for a
3197C session, a 3197D session, and a
printer session. Users can send printer
commands directly from the workstation
to the printer through interactive dis¬
plays and menu-driven setup screens.

Horizontal and vertical split screens
allow simultaneous scroll, jump, and
zoom control. A printer driver cartridge
extends the attached printer list by up¬
loading a driver from the cartridge to
the workstation.

Reader Service 38

The product features a pit-edge detec¬
tion method of recording that increases
the disk-pit capacity 1.7 times over pre¬
vious approaches. The company plans to
begin shipment in the first quarter of
1991 at a cost of $650.

Reader Service 35

eludes interfaces to Dynamic Data Ex¬
change, which allows information shar¬
ing with other programs. Also, Dynam¬
ic Link Libraries provide a calling
application mechanism outside Small¬
talk V.

Smalltalk V costs $499.95 and comes

with electronic support on CompuServe.

Reader Service 36

Windows available for
Unix-based platforms

Ingres Corp.’s Windows 4GL, a visual
programming tool and fourth-generation
language development system, runs on
Hewlett-Packard HP-UX, IBM RISC
6000, DEC Ultrix/Ultrix SQL, and the
SCO’s Open Desktop. Windows 4GL,
with a Macintosh-like graphical user in¬
terface, allows users to visually build and
modify database applications by select¬
ing elements with a mouse and arranging
them on screen.

According to the company, the prod¬
uct’s object-oriented fourth-generation
language decreases the number of lines
of code that need to be written to build
an application by as much as 90 percent.
The life-cycle management provides data
dictionary control over application ele¬
ments and allows several users to work
simultaneously on multiple versions of
the same application.

For two to eight workstations, Win¬
dows 4GL costs $1,400 per node.

Reader Service 37

Screen print with trim and page-positioning capabilities are standard with the
3697 color workstation from Decision Data.

Smalltalk V works with Windows

December 1990 95

Image scanner available
on HP Unix workstations

Portable fax holds about 30 letter-size sheets.

Compact fax sends standard documents

Tetra Systems’ Tetra Scan image
scanner system is now available for the
HP 9000-series 300 and 400 worksta¬
tions. The system provides an OSF-Mo-
tif-based application interface to scan¬
ner products such as the HP Scanjet,
Ricoh IS-30, and Howtek Scanmaster.
A graphical user interface allows inter¬
active selection of the scanned area
while providing control over image res¬
olution, quantization, and halftones. A
parallel scanner interface board comes
with the system.

An optional $3,500 image-scanning
coprocessor provides a bidirectional
Centronics port and a dedicated 10-
MIPS coprocessor with 2 Mbytes of im¬
age memory. The network-transparent
user interface allows several worksta¬
tions to share one scanner.

Tetra Scan can save images in a vari¬
ety of file formats, including TIFF,
PCX, TARGA, and ISP. These images
can be used with other application soft¬
ware or printed on an HP Laserjet or
Paintjet.

Tetra Scan costs $2,495. Software-
only and accelerated configurations are
available from $1,495 to $4,700.

Ricoh’s 5.5-lb, portable fax machine
can send and receive letter-size docu¬
ments or serve as a copier. The 11x7
X 2-in. PF-1 connects to phone lines via
a standard RJ11C jack or runs from a
battery pack.

The PF-1 error correction mode reput¬
edly corrects transmission communica¬
tion errors without requiring user retrans¬
mission. ECM checks incoming docu¬
ment frames and demands automatic re¬
transmission of error-filled blocks. This
mode also allows communication with
models from different manufacturers.

The Open Software Foundation has
announced the first release of the OSF/1
operating system. It is compatible with
Unix System V and Berkeley program¬
ming interfaces and can be used in the
Intel 302, Digital Equipment Corp.’s
Decstation 3100 workstation, and the
Encore Multimax multiprocessor system,
among others.

OSF/1 supports the OSF/Motif graphi¬
cal user interface and employs a Mach-
based kernel from Carnegie Mellon
University that allows workloads to be
distributed among multiple processors.

The PF-1 transmits documents at 34
seconds per page and 4,800 bits per sec¬
ond in two resolutions, 100 x 200 and
200 x 200 lines per inch.

Standard PF-1 accessories include a
car adapter for the cigarette lighter, an
AC adapter for standard wall outlets, and
the battery pack and charger. Options in¬
clude a carrying case, an acoustic cou¬
pler, and a spare battery pack. Basic
price is $1,695.

Reader Service 39

The kernel offers dynamic system con¬
figuration, logical volume management,
and disk mirroring.

Other integrated technologies include
portions of IBM’s Aix V. 3.1 operating
system. System V and BSD4.3 com¬
mands, and the Berkeley 4.4 Virtual File
System.

OSF plans to release subsequent ver¬
sions of the system every 12 to 18
months, culminating in microkernel im¬
plementations.

Reader Service 40

Reader Service 41

Enhanced version of
Cobol/2 compiler for Unix
announced

Version 1.2 of the Micro Focus Cobol/
2 compiler for Unix includes the compa¬
ny’s Cobol/2 native-code-generating
compiler and programmer productivity
tools — such as a visual debugger — in a
bundled system for production and main¬
tenance of Cobol applications.

The release is available for AT&T
Unix System V. 4 and SCO Unix operat¬
ing systems on i80386 workstations and
for other platforms from computer manu¬
facturers that resell Micro Focus Cobol/2
products.

Features in the enhanced version in¬
clude indexed sequential access method
file data compression and file key com¬
pression, and support for color, wide ter¬
minals, and attached printers. Another
extension supports the setting of dynamic
screen attributes from within the user
program and provides compatibility with
RM/Cobol-85.

Reader Service 42

Operating system opens up computing environments

96 COMPUTER

Alsys introduces Ada for Real-time compression technology runs on DOS systems
Macintosh in several forms

Alsys’s software engineering envi¬
ronment for the Macintosh contains a
production-quality Ada compiler, a
menu-driven interface, and a set of pro¬
gramming tools to develop Ada appli¬
cations.

The $1,815 environment runs under
the Macintosh window-based program¬
mer’s workshop, which allows develop¬
ers to perform program editing, file ma¬
nipulation, compilation, and program
execution. The applications can run
either as MPW tools or as stand-alone
applications.

Alsys allows users to write Macin¬
tosh-like applications through Ada in¬
terface packages to the Macintosh tool¬
box. Existing code written in other
languages may also be reused through
interfaces to MPW C and Pascal.

The Alsys compiler includes high-
and low-level optimizers, and the
library environment contains family,
library, and unit managers. The toolset
includes a symbolic source-level debug¬
ger and program viewer, a cross-refer¬
ence generator, a recompilation aid, and
a source reformatter. The software fea¬
tures a runtime executive, a standard
user interface, required Ada packages,
and an ISO-standard math library.

The product runs on 68020- or
68030- Apple Macintosh computers
with system software V. 6.0 or above
and generates code for any Macintosh
computer. Four Mbytes of main memo¬
ry (8 Mbytes with Multifinder) and 15
Mbytes of disk space on a single disk
volume are required.

Reader Service 43

Hewlett-Packard
introduces C++ compiler

Hewlett-Packard now offers a C++
compiler based on AT&T C++ V. 2.1 on
the HP-UX operating system. The com¬
pany describes it as a “true” C++ com¬
piler, meaning that it generates object
code directly from C++ source code.
The new release increases compile-time
performance on HP-UX operating sys¬
tems up to 75 percent, according to the
company.

HP’s C++ version 2.1 compiler costs
$1,700.

Reader Service 44

Stac Electronics’ Stacker enables IBM
PCs and compatibles to double Winches¬
ter disk storage without a new hard drive.
The product is available in three forms:
in a 30-Kbyte software program for lap¬
top, notebook, and Micro Channel com¬
puters; with an add-in board for IBM
PCs and compatibles; and in coproces¬
sors for new systems.

Stacker provides continuous compres¬
sion and decompression (transparent to
the user) without data loss or user inter¬
vention during read and write requests to
the disk drive. Using a compression ratio
of 2:1, Stacker reduces most PC data to
half its former volume. In some cases,
the company claims, compression ratios
can reach 15:1.

The product is compatible with MS-

DOS and PC-DOS 3.x and 4.x, including
Compaq’s 3.31 DOS version. Stacker
works with operating environments such
as Microsoft Windows 3.0, DOS com¬
mands, disk-caching programs, utility
programs, and all hard drives.

A device driver development kit is
available to OEMs that features device
driver object code, sample hardware in¬
terface source code, hardware interface
software specification, a driver valida¬
tion test suite, and two evaluation
boards.

The software-only version costs $129;
with a coprocessor board. Stacker costs
$229.

Reader Service 45

LNGCHARBOTTE

CHAIRPERSON
Department of

Computer Science
COLLEGE OF ENGINEERING

Search Continued

Applications and nominations are invited for the position of Chairperson of the Department
of Computer Science. Applicants must have a Ph.D. or equivalent in Computer Science or a
related field and must show a successful record of research in computer science, computer
engineering, or information science. In addition, the individual must have a strong interest in
teaching and research at both undergraduate and graduate levels, and exhibit academic and
administrative leadership qualities. The position will be at the rank of Professor with a highly
competitive salary. Anticipated starting date is July 1,1991.

UNC Charlotte is one of the largest institutions of the UNC System. It has more than 14,000
students including 2,100 graduate students in the six colleges of Arts & Sciences, Architecture,
Business Administration, Education & Allied Professions, Engineering, and Nursing, and in the
Graduate School.

The Department of Computer Science has 24 faculty and is the largest of the five
departments within the College of Engineering. It offers a B.A., a B.S., and an M.S. degree in
Computer Science and over the next few years will continue the development of its research
and graduate programs including doctoral level work. The university if firmly committed to
providing personnel and facilities for this department including participation in a new 75,000 sq.
ft. Applied Research Center. Our immediate proximity to the University Research Park with
tenants such as IBM, Verbatim, AT&T, Bell South, etc. and our participation in the Microelec¬
tronics Center of North Carolina, the North Carolina Supercomputing Center, and the Engineer¬
ing Research Center greatly enhance our education and research activities. Current faculty
strengths are in the areas of artificial intelligence, computer engineering, database systems,the¬
oretical computer science, and computer networks.

With a metropolitan population of over one million, Charlotte is the largest city in the
Carolinas. Located within a few hours drive of the mountains and the ocean, Charlotte has a
moderate climate, attractive neighborhoods, and a multitude of cultural and recreational
opportunities. Charlotte Douglas International Airport is one of the busiest in the South and
Charlotte is among the largest banking centers in the United States.

Nominations and letters of application including a resume and names of four references
should be addressed to: Dr. Robert Carrubba, Chairperson, CSCI Search Commit¬
tee, College of Engineering, UNC Charlotte, Charlotte, NC 28223. Initial screening
is underway, and early submission of applications is encouraged, although applications
will be accepted until the position is filled. AA/EOE

December 1990

1C Announcements
Company, Model, Function Comments r.S. No.

Advanced Micro
Devices
PAL22V10
PAL device

Mil-Std-883C 12-ns version of the PAL22V10 for DSP or avionics operates at 50-MHz maxi¬
mum frequency. Also available in 10-ns version. Macrocell allows design flexibility. Comes in
24-pin ceramic DIPs, flatpacks, and 28-pin LCCs. Cost (100s): $57.90 (ceramic DIPs);
$104.25 (flatpacks and LCCs).

Analog Devices
AD9620/AD9630
Buffer amplifiers

Cirrus Logic
CL-CD2401
Intelligent controller

Hitachi
HA 13481 S/HA 1350 IS
Drivers-controllers

Integrated Device
Technology
IDTR3051/IDTR3052
Controllers with chipset

International CMOS
Technology
PA7024P- 1/PA7024J-1
PEEL arrays

Micro Linear
ML4819
Power-supply controller

Motorola
68HC05E1
CSIC microcontroller

NMB Technologies
AAA1M300 series
DRAMs

SGS-Thomson
Microelectronics
ST5421
S-transceiver

Twinhead
TH4100
AT chip

Unity-gain wide-band buffer amplifiers with closed-loop architectures. The AD9620 features 121
0.989V/V minimum gain accuracy over temperature for a 2V peak-to-peak input swing. The
AD9630 has a minimum gain accuracy of 0.983Y/V. Slew rates are 2,200- and 1,200V/ps with
1.6- and 1.5-ns maximum rise-and-fall times for a IV step over the operating temperature ranges.
Both devices feature an output stage to minimize series resistance. Cost (100s): $19, AD9620;
$6.25, AD9630.

Four-channel multiprotocol communications controller serves as intelligent coprocessor. 122
Combines with eight-channel DMA controller on one chip. Meets US, European, and Japanese
modem-control signal standards. Receives and monitors data from different-protocol channels
and sends or responds to flow-control characters. Features embedded RISC processor that
offloads functions from CPU. Cost (1,000s): $31.

Intelligent spindle-motor driver/controllers for hard drives that do not require Hall-effect sen- 123
sors. The HA13481S runs 3.5-inch drives on 12V; the HA13501S controls 2.5-inch and smaller
drives on 5V. Features discriminator circuitry for programming spindle speeds by selecting ex¬
ternal oscillator frequency, divide ratio, and count number. Cost (50,000s): $3.40, HA 1348IS;
no price given for HA13501S.

Meet JIAWG military standard for 32-bit avionics systems. One-chip CPUs feature integrated 124
MIPS R3000A processor, instruction and data cache, memory management unit, clock genera¬
tor, DMA arbiter, and four deep read and write buffers. CPUs rated from 16 to 35 MIPS at 20- to
40-MHz operation. MMU comes with optional translation lookaside buffer. Cost (10,000s): $30,
R3051 (6-Kbyte cache); $49, R3052 (10-Kbyte cache).

Programmable, electrically erasable logic arrays support 60-MHz system clock rates and furnish 125
20 I/Os, two input/system clocks, and 20 buried logic control cells. Each can be configured to
have D, T, or JK registers with independent or global clocks, presets, and resets. Cost (1,000s):
$16.67, PA7024P-1; $17.42, PA7024J-1.

Combines power-factor corrections and pulse-width modulation into single device. Reduces 126
control-section size in power supplies for PCs in 150- to 400-watt range, as well as for computer
peripherals, plotters, and printers. Cost (100s): $3.95 (20-pin DIPs).

Software-programmable phase-lock loop oscillator subsystem, a real-time clock-interrupt 127
circuit, and 364-byte RAM storage with HC05 CPU chassis. Features 4-Kbyte ROM, a 32-KHz
PLL oscillator, a 15-stage timer, and 20 I/Os. Originally designed for Macintosh LC and Ilsi. Cost
(depending on volume): $3 to $3.50 .

CMOS devices come in 1-Mbit x 1 and 256-Kbit x 4 versions. Feature 53-, 60-, and 70-ns 128
maximum access times and 100-ns read/write cycle time. Allow direct memory access with 16-
and 20-MHz processors. Enhanced page mode available with 40-ns read/write cycle time. Re¬
quires power consumption of 400 mW. Cost (10,000s): $5.

CCITT 1.430-compliant IC handles four-wire S-interface at 192 Kbits/sec., carrying two B 129
channels at 64 Kbits/sec. each for data and voice transmission. Also carries D channel at 16 Kbits/
sec. for signaling and packet data transfer. Uses general circuit interface for communication. No
price given.

One-micrometer ASIC comes in 208-pin quad flatpack with a gate count of 20,500 (80,000+ tran- 130
sistors). Chip implementation of IBM PC AT system logic includes system bus controller/buffer,
integrated peripherals controller, and EMS memory controller. Supports 80286 and 80386SX
CPUs at 12, 16, or 20 MHz. No price given.

98 COMPUTER

Microsystem Announcements
Company, Model, Function_Comments

Doctor Design
XQC-8200
X Windows controller

ICS Electronics
ICS 2323A
Serial interface

Klever Computers
K386-25/33
Small AT motherboard

Mercury
I/OMaxl
Daughterboard

Mesa Electronics
6M22F disk emulator

MNC International
QC 9230x
LAN cards

Newer Technology
Attraction+
Memory board

SBE
Vcom-25
Communications
controller

Themis
Tsvme 55IX
Network controller

Win Systems
MCM-SBC42
Single-board computer

Zeos International
Zeos Notebook 286
Lightweight PC

Supports color monitor resolutions of 1,024 X 768, 800 x 600, and 640 x 480 at 8 bits per pixel. 135
Provides 256 colors from a 16-million-color palette. Levels of DRAM expansion available from
2 to 24 Mbytes with 1-Mbyte VRAM for image memory. ROM expands to 2 Mbytes for system
boot, hard-loading X server software, and font storage. Cost: $75,000 (OEM licensing; hardware
royalties from $10).

Supports computers or other serial sources that require a parallel data word. Translates serial 136
messages into latched BCD/hex or binary data or vice versa. Parallel interface configured for
10-BCD/hex input and 10-BCD/hex latched output. Fits most applications with plug-in EPROM,
operates with RS-232/422/485 ports, and accepts asynchronous formats and baud rates.
Cost: $360.

Features 128-Kbyte on-board cache with optional SRAM, up to 16 Mbytes of 80-ns 137
SIMM, and eight expansion slots. Runs on 25- or 33-MHz Intel 386 processor and includes
80387 coprocessor socket, Weitek math coprocessor, and shadow RAM for system and video
BIOS. Supports six 16-bit AT slots and two 8-bit XT slots. Compatible with OS/2, PC-DOS,
Unix, Xenix, and Novell software. Cost: $1,050 (2 to 9 units).

Daughterboard for Mercury MC860 i860-based processor provides Maxbus interface transfer 138
rate of up to 20 Mbytes/sec. Bidirectional FIFO packs 8 or 16 bits to and from 32-bit word. Data
transfers to MC860 memory at 80 Mbytes/sec. over DMA interface. Cost: $2,090.

Rugged, solid-state disk replacement features short-slot (4.2 x 5.5-inch) PC bus card that oper- 139
ates in temperatures from -40° to 85°C. Comes with on-board firmware and software utilities that
support directory buffering to minimize EEPROM write cycles. Uses less than 250 mW of power
and features eight 32-pin JEDEC standard memory devices. Stores up to 4-Mbytes data; expan¬
sion available with additional cards. Cost: $149 (100s).

Series of Arcnet cards for NEC Prospeed 286, 386SX, and 386 laptops connect to coaxial net- 140
works in either star or bus modes. A twisted-wire-pair model is also available. The Novell-com¬
patible cards run on laptop batteries at 2.5 Mbps. Cost: $385, QC 9230-2 (star); $395, QC 9230-5
(bus); $445 QC 9230-6 (twisted-wire pair).

Board for ISA and EISA 286, 386, and 486 PCs supplies up to 16 Mbytes of 16-bit memory. Up- 141
gradable in increments of 2 Mbytes with 1-Mbyte SIMMs or of 8 Mbytes with 4-Mbyte SIMMs.
Supports 12.5-MHz bus speed and 33-MHz CPU operation in DOS, OS/2, Novell, Windows,
Unix, and Xenix environments. No cost given.

Serial interface for OEMs, systems integrators, and VARs developing 9U VMEbus systems 142
and workstations. The 20-MHz, 68020-based board provides four or eight full-duplex, inde¬
pendently programmable ports with T1 speeds up to 1.544 Mbps. Available with X.25 software
for wide-area networking. Configures for RS-232C/449 and V.35 requirements. No price given.

Includes six serial channels with modem support, two Motorola 68302 integrated multiprotocol 143
processors, and a 68020-based concurrent processing architecture. Features 20-Mbyte/sec.
VMEbus DMA transfer rate. Software support includes OSI-compatible X.25, PAD, and TCP/IP
backplane drivers; Unix, OS-9, and Vrtx velocity drivers also available. Cost: $3,950.

Intelligent board based on the NEC8 or 10-MHz V40 processor operates independently of master 144
STDbus CPU or as control coprocessor. A 32-Kbyte shared memory mapped into the main system
communicates with master STDbus processor. Provides synchronous or asynchronous data com¬
munication over two serial I/O ports. ROM firmware supports DOS and embedded systems appli¬
cations. Consumes less than 5W and requires +5VDC. Cost: $595.

Weighs less than seven pounds and includes a 1-Mbyte memory, VGA display, 20-Mbyte hard 145
disk, and 1.44-Mbyte floppy drive. Runs at 12.5 MHz for about two hours on a snap-in battery.
Features an 80286 processor, 82-pad keyboard, and standard I/O port connectors for peripherals.
Cost: $1,995.

December 1990 99

CONFERENCES
Editor: Edmund L. Gallizzi, Computer Science Department, Eckerd College, St. Petersburg, FL 33733, phone (813) 864-8272, e-mail e.gallizzi@compmail.com

Honoree Dijkstra says students should challenge popular trends

Anish Arora and Paul C. Attie
University of Texas at Austin and Microelectronics and Computer Technology Corp. (MCC)

Speaking during a two-day symposium
honoring his 60th birthday, Edsger W.
Dijkstra of the University of Texas at
Austin asserted that the most important
thing academia can teach its graduate stu¬
dents is to avoid jumping on bandwag¬
ons. Instead, he said, students should sub¬
scribe only to those concepts that they
have good technical reasons to believe in.

During his evening banquet talk May
10 in Austin, Dijkstra related some of the
major milestones of his 39-year com¬
puter science career, including the imple¬
mentation of Algol 60 and his work on
process synchronization and program
derivation. The honoree thanked the Bur¬
roughs Corporation for appointing him a
research fellow, noting that he had found
it hard to penetrate industry even while
working for a company. He also acknowl¬
edged the UT/Austin Department of
Computer Sciences and the symposium
organizers, Robert Boyer, Jayadev
Misra, and Hamilton Richards.

The main speaker at the banquet, David
Gries of Cornell University, praised
Dijkstra’s discipline, intense desire to be
honest, and skill with the pen that most
people would “kill to have.” A number of
Dijkstra’s associates made short
speeches. Three letters of tribute were
read, one from the Polish Information
Processing Society, another from Brian
Randell of the University of Newcastle
upon Tyne, and a third from Don Brabin
of British Petroleum Venture Research.

Frontiers-in-computing theme. The
organizers called the May 10-11 sympo¬
sium “Frontiers of Computing — A Trib¬
ute to Edsger W. Dijkstra.” It featured
eight invited presentations.

Mani Chandy of the California Insti¬
tute of Technology opened the proceed¬
ings with a presentation on “Simultaneity
in Distributed Systems” in which he ad¬
dressed the inadequacy of intuitive rea¬
soning for establishing correctness of
distributed systems. He noted that opera¬
tional arguments about the behavior of
distributed systems are complex since
components in a distributed system oper¬
ate concurrently and at possibly dif¬
ferent speeds. In using intuitive argu¬

ments, he said, you risk overlooking
some scenarios.

Chandy illustrated this view by conjec¬
turing a method to check, in a piecemeal
fashion, whether actions occurring in dif¬
ferent components are simultaneous. To
establish correctness of the method, he
first showed a simple, two-dimensional
geometrical proof for the case in which
each communication channel in the dis¬
tributed system is accessed by at most two
components. He next presented an intui¬
tively plausible argument based on dia¬
grams, which implied that the simple
proof continues to hold when generalized
to n dimensions (n>2), thereby accom¬
modating the general case in which each
communication channel is accessed by
up to n components.

On careful consideration, however, it
turned out that the generalization failed
for certain intricate sequences of actions
that were not obvious in the diagram¬
matic argument. Chandy concluded,
“While intuition is often helpful in for¬
mulating solutions, correctness is best es¬
tablished by formal reasoning.”

Mechanical verification. Jay Moore
of Computational Logic spoke on “An
Applicative Theorem Prover Written in
its Own Logic, The Saga Continues,” set¬
ting forth the view that the main goal of
mechanical theorem-proving is to make
the verification of programs practical.

Moore related his work to Dijkstra’s by
stating, “Mechanical methods will not be
practical until manual methods (that is,
proofs by hand) are.” Therefore, Dijkstra
is doing all of us “great service” by his
work on manual methods. He cited the re¬
cursive unsolvability of the halting prob¬
lem and Godel’s Incompleteness Theo¬
rem as examples of fundamental theo¬
rems that have been proven by the Boyer-
Moore theorem prover.

Moore’s vision of the work is that veri¬
fication is needed for all levels of a sys¬
tem: the runtime environment, high-level
language compiler, assembler, and link¬
ing loader as well as the application pro¬
gram. Computational Logic has designed
such a system and verified each level us¬
ing the Boyer-Moore theorem prover.

Moore illustrated the approach by giving
an example of a small program and its
code listing at each level of this system.
He stressed the need to be concerned with
verification down to the bit level and that,
while source program correctness is im¬
portant, it is only the “tip of the iceberg.”
A major new project (the source of the
title of the talk) is a new theorem prover
that supports a subset of applicative Com¬
mon Lisp.

Nondeterministic programs. Misra
of UT/Austin spoke on “Equational Rea¬
soning about Nondeterministic Pro¬
grams,” commenting that an alternative
title could be “Nondeterminism Consid¬
ered Harmful.” He first reviewed the
equational technique of Kahn, which de¬
scribes a network of deterministic com¬
municating processes by a set of equa¬
tions. An equation describes the output of
a process as a function of its inputs, and
the set of equations can be solved alge¬
braically. Interestingly, the solution of
these equations is the sequence of mes¬
sages that flows along each channel.

Misra said that in distributed systems
many of the component processes are in¬
herently nondeterministic; in some
states, these systems may execute any of
several actions. One such example is a
fair merge process, which has two input
channels and a single output channel. A
message arriving on either of the input
channels is guaranteed to be eventually
placed on the output channel.

Nondeterminism implies that a given
output sequence is not uniquely deter¬
mined by the input sequence; in the fair
merge, for example, there are many out¬
put sequences that would be the fair
merge of a given pair of input sequences.
This phenomenon prevents the straight¬
forward application of Kahn’s method to
networks containing nondeterministic
processes, since it causes the set of equa¬
tions to have multiple solutions, some of
which are nonsensical in that they violate
the normal laws of cause and effect.

In the remainder of his talk, Misra out¬
lined a technique for modifying Kahn’s
method to eliminate the nonsensical
solutions.

100 COMPUTER

Proof design and program derivation.
Nettie van Gasteren of the University of
Utrecht and Wim Feijen of the Eindhoven
University of Technology, two institutes
in the Netherlands, jointly “simulated” a
typical session of the Tuesday Afternoon
Club. (The club is a discussion group that
Dijkstra organized first at Eindhoven and
later at UT/Austin, where it currently
meets.) Their simulation consisted of
two parts, one on proof design and the
other on program construction, both of
which are frequent themes of club meet¬
ings.

Van Gasteren suggested that the design
of calculational proofs can be reasonably
based on the “shape” of the formulae in
the proofs. She illustrated this claim us¬
ing an example in which the design deci¬
sions at each proof step were based on
heuristic techniques similar to the ones
adopted and developed in the recent
book. Predicate Calculus and Program
Semantics (Springer-Verlag, New York,
1990), coauthored by Dijkstra and Carel
Scholten.

Feijen continued the session with the
claim that programs can be reasonably
designed hand in hand with their correct¬
ness proofs. As an example, he consid¬
ered the problem of determining, in linear
time, the lexicographic minimum of a cir¬
cular array. Feijen conjectured that a
single Do-loop would suffice for solving
the problem in linear time, and designed
the invariant accordingly. Once the in¬
variant had been completely determined,
he called upon van Gasteren to extempo¬
raneously complete the program, which
she did with remarkable ease. He then
gave a simple termination argument to
complete the program design.

Algebra of lists. David Turner of the
University of Kent wrapped up the first-
day’s proceedings with a study in the al¬
gebra of lists. His talk, “Duality and De
Morgan Principles for Lists,” drew inspi¬
ration from Dijkstra’s belief that “a study
in the algebra of Boolean operations
should not be taken trivially.”

Based on the observation that the num¬
ber of useful list-processing operations is
quite large, Turner emphasized the need
for a set of principles to organize the alge¬
bra of lists. He suggested that such an or¬
ganization is made possible by the insight
that, for finite lists, the list-reverse opera¬
tion plays a role analogous to that of nega¬
tion in the Boolean algebra. Thus, the list
analog of the duality principle in Boolean
algebra is that each algebraic identity
over finite lists remains true if every list
operation is replaced by its dual.

By analogy to the De Morgan
principle, REV (fx0, xv xN) = g (REVxQ)
(REV x,) ... (REV xN), where REV is a con¬
text-dependent generalization of the list

reverse operation, and / and g are dual op¬
erations that take x0, xx,..., xN as argu¬
ments.

Turner said that a methodological im¬
plication of this work is that if an opera¬
tion is not its own dual, then its dual op¬
eration should be named. Also, the fact
that these organizing principles work
only for finite lists is evidence that finite
and infinite lists should be treated as dif¬
ferent types.

Program extensibility. Niklaus Wirth
of ETH Zurich, a long-time associate of
Dijkstra, opened the next day’s session
with a talk entitled “Program Extensibil¬
ity.” He focused on the object-oriented
programming paradigm and asserted, “It
is dangerous to come up with a com¬
pletely new paradigm that is the silver
bullet — a solution to all your problems. I
prefer to work in an evolutionary way.”

Wirth went on to state that separation
of concerns is important to us, crediting
Dijkstra for his contribution in this re¬
gard. In the early 1980s, we achieved
separation of concerns by dividing pro¬
grams into modules with well-defined in¬
terfaces, Wirth said. In the late 80s, we
recognized that not only do we write pro¬
grams, but we “grow” them.

It is impractical to completely rewrite
the code every time a request for more
functionality arises, he said. It is also the
case that specifications are initially in¬
complete and, therefore, new requests for
functionality arise while the system is in
use. Current techniques are inadequate
for this, and this is where object-oriented
programming can help us, said Wirth. He
went on to give an example illustrating
how new (sub)classes can be added to a
system without requiring extensive
changes to already present modules.

Specifying behaviors. Wlad Turski of
the Warsaw University followed with “Is
Specifying Behaviors Similar to Specify¬
ing Computations?” dealing with the
question of whether general information¬
processing tasks (behaviors) can be
specified in the same manner as sequen¬
tial computations.

Turski presented two principles to be
used in the specification of concurrent
systems: (1) A process should not be al¬
lowed access to more information than is
strictly necessary for it to perform its
task, and (2) An unbounded sequence of
bad scheduling choices, which causes a
request for resources to be denied for¬
ever, can be ignored.

The first principle is needed because
excess knowledge allows processes to
monopolize resources, thereby causing
requests for these resources by third par¬
ties to be denied forever. Turski argued
that the second principle is justified be¬

cause an unbounded sequence of bad
scheduling choices will not occur in prac¬
tice: it violates the second law of thermo¬
dynamics.

Turski went on to present a specifica¬
tion of the dining-philosophers problem
that used both of the above principles. He
proved that the specification was dead¬
lock free and that a philosopher is pre¬
vented from eating only by an unbounded
sequence of bad scheduling choices.

At the conclusion of the talk, Doug
Mcllroy of Bell Laboratories asked,
“What if the philosophers resonate with
each other and therefore starve?” Turski
responded, “In the physical world, no two
components will resonate on the same
frequency unless stimulated.” This was
followed by a remark that “axiomatizing
an analogue to the second law of thermo¬
dynamics for digital systems leads to fair¬
ness,” and Turski agreed.

Program semantics. Jan van de
Snepscheut of Caltech gave the final
presentation. He recalled one of
Dijkstra’s seminal contributions,
namely, the development of the seman¬
tics of guarded command programs using
the functions wp, the weakest precondi¬
tion, and wlp, the weakest liberal precon¬
dition. The functions wp and wlp, also
called predicate transformers, are useful
in specifying invariants and capturing a
program’s input-output relation. Thus,
they form a basis for verifying properties
of programs.

Snepscheut extended previous work
by formulating predicate transformers
that capture progress properties of the
form P leads-to Q. (Informally, P leads-
to Q in a program means that if P ever
holds in an execution of the program then
either Q holds at that point or Q holds
eventually.) In particular, he defined four
predicate transformers: wev, wlev, wto,
and wlto. He went on to analyze the char¬
acteristics of these transformers (for ex¬
ample, their conjunctivity and disjunc-
tivity) and stated theorems with which
loop invariants can be proven using these
transformers.

After the talk, Mohamed Gouda of UT/
Austin asked whether the predicate trans¬
former approach could be extended to in¬
clude parallel composition. Snepscheut
replied that he had studied this important
problem and found it to be a technically
challenging one.

Finale. At the conclusion of the ban¬
quet, Dijkstra was presented a copy of
Beauty is Our Business (Springer-Ver¬
lag, New York, 1990), a collection of 54
short, technical articles contributed by
more than 60 of Dijkstra’s colleagues and
edited (without Dijkstra’s knowledge) by
Gries, Misra, Feijen, and van Gasteren.

December 1990 101

CALL FOR PAPERS
IEEE Software seeks articles for publi¬
cation in 1991 and 1992 on the following

topics: software renovation, work-group com¬
puting, maintenance under the object-oriented
paradigm, postmortem analysis of software

projects (from both technical and management
perspectives), embedded systems program¬
ming and development, industrial experiences
with Ada and C++, human factors issues for
software developers, and use of CASE tools in

industrial development. Articles in IEEE Soft¬
ware focus on results and experience useful to
practitioners. Submit eight copies of articles to
Carl Chang, IEEE Software, 1120 Science and
Eng. Offices, MC 154, Univ. of Illinois, Chi-

Call for papers and referees for Computer

Computer seeks articles for inclusion in upcoming
special issues.

Distributed Computing Systems has been selected as
the theme for the August 1991 issue. Prospective authors are
invited to submit tutorial, survey, descriptive, case-study,
application-oriented, or pedagogic manuscripts. See the July
1990 issue of Computer (p. 120) for complete information.

The deadline for complete manuscripts is January 1, 1991.
Notification of decisions is set no later than March 15, 1991,
and the final version of each manuscript is due no later than
May 1, 1991.

Submittals and questions should be directed to either of the
guest editors, Mukesh Singhal, Department of Computer and
Information Science, Ohio State University, Columbus, OH
43210, phone (614) 292-5839, e-mail singhal@cis.ohio-
state.edu; or Thomas L. Casavant, Department of Electrical
and Computer Engineering, University of Iowa, Iowa City, IA
52242, phone (319) 335-5953, e-mail tomc@eng.uiowa.edu.

Multimedia Information Systems will be the theme of the
October 1991 issue. Manuscripts reporting survey, original
research, design and development, and applications of multi-
media technology are sought. See the October 1990 issue of
Computer (p. 100) for complete information.

Eight copies of each complete manuscript must be submit¬
ted by February 1, 1991. Notification of decision is set for May
1,1991, and the final version of each manuscript must be sub¬
mitted by July 1,1991.

Submissions and questions should be directed to A. Desai
Narasimhalu, Inst, of Systems Science, National University of
Singapore, Heng Mui Keng Terrace, Singapore 0511, phone
(65) 772-2002, fax (65) 778-2571, e-mail issad@nusvm; or
Stavros Christodoulakis, Department of Computer Science,
Davis Building, University of Waterloo, Waterloo, Ont., Can¬
ada, phone (519) 888-4452 or (30) 821-64846, fax (519) 885-
1208 or (30) 821-53571, e-mail schristodoul@waterloo.edu.

Heterogeneous Distributed Database Systems is the
theme planned for the December 1991 issue. See the August
1990 issue of Computer (p. 115) for complete information.

Abstracts of the manuscripts are due no later than January

1,1991, and eight copies of the complete manuscripts must
be submitted by April 1,1991. Notification of decisions is July
1,1991, and the final version of each manuscript is due Sep¬
tember 1, 1991.

Submissions and questions should be directed to Sudha
Ram, Department of Management Information Systems, Eller
School of Management, University of Arizona, Tucson, AZ
85721, phone (602) 621-2748, e-mail ram@mis.arizona.edu
on Internet or ram@arizmis on Bitnet.

Parallel Processing for Computer Vision and Image
Understanding (CVIU) is the theme planned for the Febru¬
ary 1992 issue. Tutorial, survey, architecture case-study,
performance evaluation, and other manuscripts are sought.

Subareas of interest include, but are not limited to:

• Architectures: Multiprocessor architectures and special-
purpose architectures for CVIU.

• Algorithms: Design, mapping, and implementation of par¬
allel algorithms for CVIU problems.

• Languages: Design of languages for efficient implementa¬
tion of CVIU programs, especially for parallel processing and
architecture-independent implementations.

• Software development tools for parallel CVIU applica¬
tions.

• Performance evaluation: Benchmarking, performance
evaluation of architectures and algorithms; performance
evaluation of integrated CVIU systems.

• Real-time vision architectures and applications.

Fourteen (14) copies of each complete manuscript are due
by March 1, 1991. Notification of decisions is set August 1,
1991, and the deadline for the final version of the manuscript
is October 1, 1991.

Submissions and questions should be directed to Sanjay
Ranka, 4-116 Center for Science and Technology, School of
Computer Science, Syracuse University, Syracuse, NY
13244, phone (315) 443-4457, e-mail ranka@top.cis.syr.
edu; or Alok Choudhary, Department of Electrical and Com¬
puter Engineering, 121 Link Hall, Syracuse University,
Syracuse, NY 13244, phone (315) 443-4280, e-mail
choudhar@fruit.ece.syr.edu.

For submittal to Computer, manuscripts must not have been previously published or currently submitted for publication
elsewhere. Each manuscript should be no more than 32 typewritten, double-spaced pages long, including all text, figures,
and references. Each submittal should include a cover page that contains the title of the article, the full name(s) and affilia-
tion(s) of the author(s), complete postal and electronic address(es) of all the authors as well as their telephone and fax
number(s), a 300-word abstract, and a list of keywords identifying the central issues of the manuscript’s contents. The final
manuscript should be approximately 8,000 words in length and contain no more than 12 references.

If you are willing to review articles for any of these special issues, please send a note listing your research interests to Jon
T. Butler, associate technical editor of Computer, or to one of the guest editors listed for the particular issue. Butler may be
reached at the Department of Electrical and Computer Engineering, Naval Postgraduate School, Code EC/Bu, Monterey,
CA 92943-5004, phone (408) 646-3299 or (408) 646-3041, fax (408) 646-2760, e-mail butler@cs.nps.navy.mil.

102 COMPUTER

cago, IL 60680, Internet ckchang@uicbert.
eecs.uic.edu. For detailed author guidelines,
contact Karen Potes at (714) 821-8380 or
soft.one@compmail.com.

1991, and full paper by Apr. 15,1991, to A.L.
Lakshminarasimhan, AT&T Bell Labs, 480
Red Hill Rd„ No. HR 2E030, Middletown, NJ
07748, phone (201) 615-4524.

SCAI 91, Third Scandinavian Conf. on Arti¬
ficial Intelligence: May 21-24, 1991, Roskil-
de, Denmark. Submit three copies of abstract
with long or short paper by Dec. 20,1990, to
Brian Mayoh, Computer Science Dept., Aar¬
hus Univ., Ny Munkegade, Bldg. 540, DK-
8000 Aarhus C, Denmark, phone 45 (86) 127-
188, fax 45 (86) 135725, e-mail brian@daimi.
aau.dk.

IEEE Pacific Rim Conf. on Comm., Comput¬
ers, and Signal Processing: May 9-10, 1991,
Victoria, B.C., Canada. Cosponsors: IEEE
Victoria Section, Univ. of Victoria. Submit
three copies of summary by Dec. 20,1990, to
Technical Program Committee, c/o Pan Agath-
oklis, Electrical and Computer Eng. Dept.,
Univ. of Victoria, PO Box 3055, Victoria,
B.C., Canada V8W 3P6, phone (604) 721-
8618, fax (604) 721-8676.

Int’l J. of Computer-Aided VLSI Design plans
a special issue on hardware accelerators for
CAD. Publisher: Ablex. Submit five copies of
full paper by Dec. 31,1990, to Ausif Mah-
mood, Electrical Eng. Dept., Washington State
Univ. at Tri-Cities, 100 Sprout Rd., Richland,
WA 99352, phone (509) 375-9234, e-mail
mahmood@prime.tricity.wsu.edu.

Second Int’I Conf. on Algebraic Methodol¬
ogy and Software Technology: May 22-24,
1991, Iowa City, Iowa. Submit abstract by Jan.
1, 1991, to AMAST Conf., Computer Science
Dept., Univ. of Iowa, Iowa City, IA 52242.

Compass 91, Sixth Conf. on Computer As¬
surance Systems Integrity, Software Safety,
and Process Security: June 25-27, 1991,
Gaithersburg, Md. Cosponsors: IEEE Aero¬
space and Electronics Soc., IEEE Nat’l Capital
Area Council. Submit five copies of paper by
Jan. 11,1991, to Roger U. Fujii, Logicon, 222
W. Sixth St., San Pedro, CA 90731, phone
(213) 831-0611, ext. 2420, e-mail r.fujii@
ieee.org.

Sixth Int’l Conf. CAD/CAM, Robotics, and
Factories of the Future: Aug. 19-22, 1991,
London. Sponsor: Int’l Soc. for Productivity
Enhancement. Submit three copies of abstract
by Jan. 11,1991, and manuscript by June 1,
1991, to H. Bera, Mechanical Eng. Dept.,
South Bank Polytechnic, 103 Borough Rd.,
London SE1 0AA, UK, phone 011 (91) 81-928-
8989, ext. 2095, fax 011 (91) 81-261-9115.

Compsac 91, 15th Int’l Software and
Applications Conf.: Sept. 11-13, 1991,

Tokyo. Cosponsor: Information Processing
Soc. of Japan. Submit six copies of paper by
Jan. 12,1991, to Lionel M. Ni, Michigan State
Univ., Computer Science Dept., A714 Wells
Hall, East Lansing, MI 48824-1027, phone
(517) 353-4386, fax (517) 336-1061, Internet
ni@cps.msu.edu (for the Americas, Europe,
and Africa); or Motoei Azuma, Waseda Univ.,
c/o Business Center for Academic Societies of
Japan, 3-23-1 Hongo, Bunkyo-ku, Tokyo 113,
Japan, phone 81 (3) 817-5831, fax 81 (3) 817-
5836.

IEEE Software is accepting entries for
the fourth annual Gordon Bell Prize com¬

petition. Two $1,000 prizes will be awarded.
Submit three- to four-page executive summary
and full report by Jan. 2, 1991, to 1990 Gordon
Bell Prize, c/o IEEE Software, 10662 Los Va-
queros Cir., PO Box 3014, Los Alamitos, CA
90720-1264, Compmail soft.one, Internet:
soft.one@compmail.com.

Second Physical Design Workshop: May 20-
22, 1991, Laurel Highlands, Pa. Sponsor:
ACM SIGDA. Submit 14 copies of the manu¬
script by Jan. 7,1991, to Mary Jane Irwin, 333
Whitmore Lab, Computer Science Dept., Penn
State Univ., University Park, PA 16802, e-mail
mji@cs.psu.edu.

20th Int’l Conf. on Parallel Processing: Aug.
12-16, 1991, St. Charles, Ill. Sponsor: Pennsyl¬
vania State Univ. Submit paper by Jan. 10,
1991, to Kimming So, IBM Austin, Internal
Zip 2812, 11400 Burnet Rd., Austin, TX 78758
(on algorithms and applications); Herbert D.
Schwetman, MCC, 3500 W. Balcones Center
Dr., Austin, TX 78759 (on software); and
Chuan-Lin Wu, Dept, of Electrical and Com¬
puter Eng., Univ. of Texas at Austin, Austin,
TX 78712 (on hardware and other subjects).

Tencon 91,1991 IEEE Region 10 Conf.: Aug.
28-30, 1991, New Delhi, India. Submit two
copies of extended abstract on rapid prototyp¬
ing with functional programming languages or
geometric pattern recognition by Jan. 10,

ISS 91, Conf. on Information Sciences and
Systems: Mar. 20-22, 1991, Baltimore. Spon¬
sor: Johns Hopkins Univ. Submit summary and
regular or short paper by Jan. 14,1991, to Fred¬
erick Davidson or John Goutsias, Electrical
and Computer Eng. Dept., Johns Hopkins
Univ., Baltimore, MD 21218, phone (301)
338-7871, fax (301) 338-5566.

16th Int’l Symp. on Computer Sys-
terns: Apr. 16-19, 1991, Monterrey, NL,

Mexico. Sponsor: Inst. Tecnologico y de Estu-
dios Superiores de Monterrey. Submit three
copies of full paper by Jan. 15,1991, to Carlos
D. Hinojosa A., Direccion de Carrera ISC,
ITESM, Sue. de Correos ‘J’, CP.64849, Mon¬
terrey, NL, Mexico, phone 52 (83) 58-2000,
fax 52 (83) 58-8931.

ICANN 91, Int’l Conf. on Artificial Neural
Networks: June 24-28, 1991, Espoo, Finland.
Cosponsors: IEEE Neural Networks Council,
Int’l Neural Network Soc. Submit manuscript
by Jan. 15, 1991, to Olli Simula, Helsinki
Univ. of Technology, SF-02150 Espoo, Fin¬
land, fax 358 (0) 451-3277, e-mail icann91@
hutmc.hut.fi.

RIDT 91, Second Int’l Workshop on
Raster Imaging and Digital Typogra¬

phy: Oct. 15-16, 1991, Boston. Cosponsor:
Univ. of Massachusetts. Submittal deadline:
Jan. 15, 1991. To obtain author information,
contact Robert A. Morris, Math, and Computer
Science Dept., Univ. of Massachusetts, Bos¬

ton, MA 02125-3393, phone (617) 287-6466,
e-mail ridt91-request@cs.umb.edu.

ESEC 91, Third European Software Eng.
Conf.: Oct. 21-24, 1991, Milano, Italy. Spon¬
sors: AFCET et al. Submit six copies of full pa¬
per and abstract by Jan. 15,1991, to Alex van
Lamsweerde, Unite d’lnformatique, Univ.
Catholique de Louvain, Place Sainte Barbe 2,
B-1348 Louvain-La-Neuve, Belgium, e-mail
esec@info.ucl.ac.be.

Third Int’l Workshop on Artificial Intelli¬
gence in Real-Time Control: Sept. 23-25,
1991, Sonoma Valley, Calif. Sponsor: Int’l
Federation of Automatic Control. Submit four
copies of extended abstract by Jan. 15, 1991, to
Greg Suski, Lawrence Livermore Nat’l Lab,
L-550, PO Box 808, Livermore, CA 94550,
phone (415) 423-8070, e-mail suski@ocfmail.
ocf.llnl.gov.

Third Int’l Conf. on Software Eng. and
Knowledge Eng.: June 27-29, 1991, Skokie,
Ill. Sponsors: Knowledge Systems Inst, et al.
Submit abstract and four copies of complete
paper by Jan. 15,1991, to W.D. Hurley, Com¬
puter Science Dept., Alumni Hall, Univ. of
Pittsburgh, Pittsburgh, PA 15260, phone (412)
624-8843, e-mail hurley@cs.pitt.edu.

Int’l Conf. on the Performance of Distrib¬
uted Systems and Integrated Comm. Net¬
works: Sept. 10-12, 1991, Kyoto, Japan. Spon¬
sor: Int’l Federation for Information Process¬
ing. Submit five copies of full paper by Jan. 15,
1991, to Yutaka Takahashi, Applied Math and
Physics Dept., Faculty of Eng., Kyoto Univ.,
Kyoto 606, Japan, phone 81 (75) 753-5493, fax
81 (75) 761-2437, e-mail yutaka@kuamp.
kyoto-u.ac.jp.

ICAIL 91, Third Int’l Conf. on Artificial In¬
telligence and Law: June 25-28, 1991, Ox¬
ford, UK. Cosponsors: Soc. for Computer and
Law (UK) et al. Submit five copies of paper by
Jan. 15, 1991, to Marek Sergot, Computing
Dept., Imperial College, 180 Queen’s Gate,
London, SW7 2BZ, UK, fax 44 (071) 581-
8024, e-mail mjs@doc.ic.ac.uk.

ICCIM 91, lnt’1 Conf. on Computer-Inte¬
grated Manufacturing: Oct. 2-4, 1991,
Singapore. Cosponsors: Gintic Inst, of ClM et
al. Submit extended abstract by Jan. 15, 1991,
to Lim Beng Siong, ICCIM 91, c/o Associated
Conventions and Exhibitions Pte. Ltd., 204
Bukit Timah Rd., No. 04-00 Boon Liew Bldg.,
Singapore, phone (65) 732-6839, fax (65) 732-
6309, e-mail bitnet%”gbslim@ntivax”.

1991 Int’l Conf. on Computer Processing of
Chinese and Oriental Languages: Aug. 13-
16, 1991, Taipei, Taiwan. Cosponsors: Chi¬
nese Language Computer Soc. (USA) et al.
Submit five copies of complete paper by Jan.
15, 1991, to Yaohan Chu, Computer Science
Dept., Univ. of Maryland, College Park, MD
20742, phone (301) 405-2667, fax (301) 405-
6707, e-mail ychu@cs.umd.edu.

Second Int’l Information Research Conf.:
July 15-18, 1991, Cambridge, UK. Sponsors:
British Library Research and Development
Dept, Univ. of Pittsburgh. Submit detailed ab¬
stract by Jan. 16,1991, to Karen Merry, British

December 1990 103

Library R&D Dept., 2 Sheraton St., London
W1V 4BH, UK, phone 44 (071) 323-7050, fax
44 (071) 323-7251.

IAAI 91, Third Conf. on Innovative Applica¬
tions of Artificial Intelligence: July 15-17,
1991, Anaheim, Calif. Sponsor: Am. Assoc,
for Artificial Intelligence. Submit five com¬
plete copies of paper by Jan. 18,1991, to IAAI
91, AAAI, 445 Burgess Dr„ Menlo Park, CA
94025-3496, phone (415) 328-3123.

AI 91, Frontiers in Innovative Computing
for the Nuclear Industry: Sept. 15-18, 1991,
Jackson, Wyo. Cosponsors: Am. Nuclear Soc.
Idaho Section et al. Submit summary by Jan.
18,1991, and full paper by June 15,1991, to
Richard W. Lindsay, Argonne Nat’l Lab, PO
Box 2528, Idaho Falls, ID 83403-2528, phone
(208) 526-7754, fax (208) 526-7623.

29th Meeting of the Assoc, for Computa¬
tional Linguistics: June 18-21, 1991, Berke¬
ley, Calif. Submit six copies of preliminary
version of paper by Jan. 19,1991, to Douglas
E. Appelt, Artificial Intelligence Center, SRI
Int’l, 333 Ravenswood Rd., Menlo Park, CA
94025, phone (415) 859-6150, fax (415) 859-
6171, e-mail appelt@ai.sri.com.

Sixth Int’l Workshop on Software
Specification and Design: Oct. 25-26,

1991, Como, Italy. Submit five copies of regu¬
lar or position paper by Jan. 21,1991, to Carlo
Ghezzi, Dip. di Elettronica Politecnico di Mi¬
lano, Piazza Leonardo Da Vinci 32, 20133 Mi¬
lano, Italia, e-mail relett24@imipoli.bitnet.

AAAI 91: July 14-19, 1991, Anaheim, Calif.
Sponsor: Am. Assoc, for Artificial Intelli¬
gence. Submit six complete copies of paper by
Jan. 30,1991, to AAAI 91, 445 Burgess Dr.,
Menlo Park, CA 94025-3496, phone (415)
328-3123.

First Golden West Int’l Conf. on Intelligent
Systems: June 3-5, 1991, Reno, Nev. Sponsor:
Int’l Soc. of Mini and Microcomputers. Sub¬
mit three copies of preliminary version of pa¬
per by Jan. 31,1991, to Carl G. Looney, CS
Dept., Univ. of Nevada, Reno, NV 89557,
e-mail looney@tahoe.unr.edu.

The Visual Computer plans a special issue on
visual user interface design tools. Submit six
copies of article by Jan. 31,1991, to Gurmin-
der Singh, Inst, of Systems Science, Nat’l
Univ. of Singapore, Kent Ridge, Singapore
0511, phone (65) 772-3651, e-mail issgs@
nusvm.bitnet.

Second Eurographics Workshop on Object-
Oriented Graphics: June 5-7, 1991, The
Netherlands. Sponsor: Dutch Center for Math,
and Computer Science (CWI). Submit four
copies of full paper by Jan. 31,1991, to Chris
Laffra, Math, and Computer Science Dept.,
Leiden Univ., PO Box 9512, 2300RA Leiden,
The Netherlands, fax 31 (71) 275-819, e-mail
laffra@cs.leidenuniv.nl.

22nd Pittsburgh Conf. on Modeling and
Simulation: May 2-3, 1991, Pittsburgh. Spon¬
sor: Univ. of Pittsburgh. Submit two copies of
abstract and summary by Jan. 31,1991, to Wil¬
liam G. Vogt or Marlin H. Mickle, Modeling

and Simulation Conf., 348 Benedum Eng. Hall,
Univ. of Pittsburgh, Pittsburgh, PA 15261.

/j^j\ IEEE Software plans a special issue on
software for performance analysis. Sub¬

mit six copies of manuscript by Feb. 1,1991, to
Kathleen Nichols, Apple Computer, 20525
Mariani Ave., MS 76-3K, Cupertino, CA
95014, phone (408) 974-1136, e-mail
nichols@apple.com; or Paul Oman, Computer
Science Dept., College of Eng., Univ. of Idaho,
Moscow, ID 83843, phone (208) 885-6589,
e-mail oman@ted.cs.uidaho.edu.

jfjjt IEEE Trans, on Computers plans a spe-
cial issue on artificial neural networks.

Submit six copies of manuscript by Feb. 1,
1991, to Benjamin W. Wah, Coordinated Sci¬
ence Lab, MC228, Univ. of Illinois, 1101 W.
Springfield Ave., Urbana, IL 61801-3082,
phone (217) 333-3516, fax (217) 244-1764,
e-mail wah%aquinas@uxc.cso.uiuc.edu.

®ICCD 91, IEEE Int’l Conf. Symp. on
Computer Design: Oct. 14-16, 1991,

Cambridge, Mass. Cosponsors: IEEE Com¬
puter Soc. and IEEE Circuits and Systems Soc.
Submit six copies of summary by Feb. 1,1991,
to Dwight Hill, AT&T Bell Labs, 3D-446,
Murray Hill, NJ 07974, phone (201) 582-7766,
e-mail dwight@research.att.com.

ICGA 91, Fourth Int’l Conf. Symp. on Ge¬
netic Algorithms: July 13-16, 1991, San Di¬
ego, Calif. Submit four copies of complete
paper by Feb. 1,1991, to Richard K. Belew,
Computer Science and Eng. Dept., C-014,
Univ. of California at San Diego, La Jolla, CA
92093, e-mail rik@cs.ucsd.edu.

®ITC 91, Int’l Test Conf.: Oct. 28-Nov.
1, 1991, Nashville, Tenn. Cosponsor:

IEEE Philadelphia Section. Submit paper by
Feb. 4,1991, to ITC 91, 1201 Sussex Turnpike,
Suite 101, PO Box 264, Mount Freedom, NJ
07970, phone (201) 895-5260, fax (201) 895-
7265.

IEE Bicentennial Conf. on Computing: July
1-3, 1991, London. Submit synopsis by Feb. 4,
1991, to Conf. Services, Institution of Electri¬
cal Engineers, Savoy Place, London WC2R
0BL, UK, phone 44 (71) 240-1871.

® Fifth Software Eng. Inst. Conf. on
Software Eng.: Oct. 7-8, 1991, Pitts¬

burgh. Sponsor: SEI. Submit five copies of
complete paper and abstract by Feb. 4, 1991, to
James E. Tomayko, SEI, Carnegie Mellon
Univ., Pittsburgh, PA 15213-3890, phone
(412) 268-6806, fax (412) 268-5758, e-mail
jet@sei.cmu.edu.

ICAD 91, IFIP Working Conf. on Intelligent
Computer-Aided Design: Sept. 30-Oct. 3,
1991, Columbus, Ohio. Sponsors: Int’l Fed¬
eration for Information Processing et al. Sub¬
mit five copies of camera-ready paper by Feb.
4,1991, to ICAD 91, Conferences and Insti¬
tutes, Rm. 125, 1050 Carmack Rd., Columbus,
OH 43210, phone (614) 929-1301, fax (614)
292-0492, e-mail sarah_sieling@gate.ce.
ohio-state.edu.

/gi) VLDB 91,17th Int’l Conf. on Very
Large Data Bases: Sept. 3-6, 1991, Bar¬

celona, Spain. Sponsor: IEEE Computer Soc.
Tech. Committee on Data Eng. et al. Submit
five copies of paper by Feb. 15,1991, to Amil-
car Semadas, INESC, Rua Alves Redol, 9, 7°,
Apartado 10105, P-1017 Lisboa Codex, Portu¬
gal, e-mail inesc!acs%solo@relay.eu.net (US
Internet), acs%solo@inesc.uucp (Europe In¬
ternet); or Guy M. Lohman, IBM Almaden Re¬
search Center, Dept. K55, Bldg. 801, 650
Harry Rd., San Jose, CA 95120-6099, e-mail
lohman@ibm.com (Internet), lohman @
almaden (Bitnet).

Fifth Int’l Conf. on Fault-Tolerant Comput¬
ing Systems: Sept. 25-27, 1991, Niimberg,
Germany. Cosponsors: Gesellschaft fur Infor-
matik et al. Submit four copies of paper by Feb.
15,1991, to M. Dal Cin, Univ. Erlangen —
Niimberg, IMMD III, Martensstr. 3, D-8520
Erlangen, Germany, fax 91 (31) 393-88, e-mail
michel@uni-erlangen.de.

Fourth Workshop on Computational
Learning Theory: Aug. 5-7, 1991, Santa
Cruz, Calif. Submit 11 copies of abstract by
Feb. 15, 1991, to L.G. Valiant, Aiken Comput¬
ing Lab, Harvard Univ., Cambridge, MA
02138.

1991 Electronic Packaging Conf.: Sept. 15-
19, 1991, San Diego, Calif. Sponsor: Int’l
Electronics Packaging Soc. Submit eight cop¬
ies of 300-word abstract by Feb. 15,1991, to
1991 Program Committee, IEPS, 114 N. Hale
St., Wheaton, IL 60187-5113, phone (708)
260-1044, fax (708) 260-0867.

Sixth Conf. on Visual Comm, and Image
Processing: Nov. 10-13, 1991, Boston. Spon¬
sors: Int’l Soc. for Optical Eng. et al. Submit
four copies of 1,000-word extended summary
by Feb. 18,1991, to SPIE, PO Box 10, Belling¬
ham, WA 98227-0010, phone (206) 676-3290,
fax (206) 647-1445.

OOPSLA 91, Sixth ACM Conf. on Object-
Oriented Programming Systems, Lan¬
guages, and Applications: Oct. 6-11, 1991,
Phoenix, Ariz. Submit six copies of full paper
by Mar. 1,1991, to Alan Snyder, Hewlett-
Packard Labs, 1501 Page Mill Rd., PO Box
10490, Palo Alto, CA 94303-0969, phone
(415) 857-8764, e-mail oopsla91@hplabs.hp.

|£jjj 16th Conf. on Local Computer Net-
works: Oct. 14-17, 1991, Minneapolis,

Minn. Cosponsor: IEEE Computer Soc. Tech¬
nical Committee on Computer Comm. Submit
five copies of full paper by Apr. 5,1991, to
James F. Mollenauer, 16th LCN Conf., Artel
Communications, 22 Kane Industrial Dr.,
Hudson, MA 01749, phone (508) 562-2100,
fax (508) 562-6942.

®IEEE Infocom 92,11th Conf. on Com¬
puter Comm.: May 4-8, 1992, Florence,

Italy. Cosponsor: IEEE Comm. Soc. Submit
six copies of paper by June 30,1991, to L. Frat-
ta, Politecnico di Milano, c/o Cefriel, Via
Emanueli, 15, 20126 Milano, Italy, phone 39
(2) 2399-3578, fax 39 (2) 2399-3587, e-mail
fratta@imicefr.bitnet; or J. Kurose, Computer
and Information Science Dept., Univ. of Mas¬
sachusetts, Amherst, MA 01003, phone (413)
545-1585, e-mail kurose@cs.umass.edu.

104 COMPUTER

CALENDAR

December 1990

1990 IEEE Workshop on Languages
and Architectures for Automation,

Dec. 19-21, Honolulu. Sponsors: Pacific Int’l
Center for High Technology Research et al.
Contact D.Y.Y. Yun, Univ. of Hawaii, 711
Kapiolani Blvd., Suite 200, Honolulu, HI
96813-5249, phone (808) 539-1532, fax (808)
941-1399; or Shi-Kuo Chang, 322 Alumni
Hall, Univ. of Pittsburgh, Pittsburgh, PA
15260, phone (412) 624-8493, fax (412) 624-
8465, e-mail chang@vax.cs.pitt.edu.

Seventh Israeli Conf. on Artificial Intelli¬
gence and Computer Vision, Dec. 26-27, Tel
Aviv, Israel. Contact A. Bruckstein, Faculty of
Computer Science, Technion, 32000 Haifa,
Israel, e-mail freddy@techsel.bitnet; or
Shmuel Peleg, David Samoff Research Center,
CN 5300, Princeton, NJ 08543-5300, phone
(609) 734-2284, e-mail peleg@vision.sarnoff.

January 1991

Fourth CSI/IEEE Int’l Symp. on VLSI
Design, Jan. 5-8, New Delhi, India.

Sponsors: Computer Soc. of India et al. Con¬
tact Yashwant K. Malaiya, Computer Science
Dept., Colorado State Univ., Fort Collins, CO
80523, phone (303) 491-7031, fax (303) 491-
2293, e-mail malaiya@ravi.cs.colostate.edu;
or D. Roy Chowdhury, Gateway Design Auto¬
mation, SDF#A-1, Noida Export Processing
Zone, PO NEPZ, Noida 201305, India, phone
91 (05736) 62342, fax 91 (05736) 62343.

SIAM Workshop on Automatic Differentia¬
tion of Algorithms, Jan. 7-9, Breckenridge,
Colo. Contact Soc. for Industrial and Applied
Math., Conf. Coordinator, Dept. CC0590,
3600 University City Science Center, Phila¬
delphia, PA 19104-2688, phone (215) 382-
9800, fax (215) 386-7999, e-mail siamconfs@
wharton.upenn.edu.

Int’l Workshop on Formal Methods in
VLSI Design, Jan. 9-11, Puerto Rico.

Cosponsors: ACM, IFIP. Contact P.A. Subrah-
manyam, Rm. 4E-530, AT&T Bell Labs, Holm-
del, NJ 07733, phone (201) 949-5812, fax (201)
949-3697, e-mail subra@vaxl35.att.com.

Fifth Tech. Conf. on the X Window System,
Jan. 14-16, Boston. Sponsor: MIT X Consor¬
tium. Contact X Tech. Conf, Rm. 217, MIT Lab
for Computer Science, 545 Technology
Square, Cambridge, MA 02139.

Int’l Conf. on Multimedia Informa¬
nt^ tion Systems, Jan. 16-18, Singapore.
Contact Desai Narasimhalu or Juzar Moti-
walla, Inst, of Systems Science, NatT Univ. of

|£|^l In the accompanying Calendar and adjoining Call for Papers, the IEEE Com-
puter Society logo identifies the conferences the society is participating in or

sponsoring. Other conferences of interest to our readers, plus their sponsors, are
also listed.

For inclusion in Call for Papers or Calendar, submit the following information:
event name, date(s), location, and sponsor(s) as well as the phone and fax num¬
bers and the electronic address of the person to contact. In addition, for Calls for
Papers listings, include the name of the person to whom papers should be submit¬
ted and the deadline for submittals.

Computer should receive the above-mentioned information at least five weeks
before the month of publication (i.e., for the February 1991 issue, send informa¬
tion for receipt by December 20, 1990) to Chuck Governale, Calendar Dept., Com¬
puter, PO Box 3014, Los Alamitos, CA 90720-1264, fax (714) 821-4010, e-mail
c.governale@compmail.com.

Singapore, Heng Mui Keng Terr., Kent Ridge,
Singapore 0511, phone (65) 772-2075, fax (65)
772-2002, Bitnet issad@nusvm.

Int’l Workshop on Unix-Based Software
Development Environments, Jan. 16-18,
Dallas. Sponsor: Usenix Assoc. Contact Use-
nix Conf. Office, 22672 Lambert St., Suite 613,
El Toro, CA 92630, phone (714) 588-8649.

Conf. on Optics, Electro-Optics, and Laser
Applications in Science and Eng., Jan. 20-
25, Los Angeles. Sponsor: Int’l Soc. for Opti¬
cal Eng. Contact SPIE, PO Box 10, Belling¬
ham, WA 98227-0010, phone (206) 676-3290,
fax (206) 647-1445.

PADS, Workshop on Parallel and Dis¬
tributed Simulation, Jan. 23-25, Ana¬

heim, Calif. Cosponsors: ACM, SCS. Contact
Vijay Madisetti, School of Electrical Eng.,
Georgia Inst, of Tech., Atlanta, GA 30332-
0250, phone (404) 853-9830, fax (404) 894-
8363, e-mail vijaykm@petri.gatech.edu; or
David M. Nicol, Computer Science Dept., Col¬
lege of William and Mary, Williamsburg, VA
23185, phone (804) 221-3458, e-mail nicol@

Winter 91 Unix Tech. Conf., Jan. 21-25, Dal¬
las. Sponsor: Usenix Assoc. Contact Usenix
Conf. Office, 22672 Lambert St., Suite 613, El
Toro, CA 92630, phone (714) 588-8649.

Second ACM-SIAM Symp. on Discrete Al¬
gorithms, Jan. 28-30, San Francisco. Contact
SIAM Conf. Coordinator, Dept. CC0590, 3600
University City Science Center, Philadelphia,
PA 19104-2688, phone (215) 382-9800, fax
(215) 386-7999, e-mail siamconfs@ wharton.
upenn.edu.

IEEE Int’l Conf. on Wafer Scale Inte¬
gration, Jan. 29-31, San Francisco. Co¬

sponsors: IEEE Components, Hybrids, and
Manufacturing Technology Soc. Contact
Terry Chappell, 730 Encino Dr., Aptos, CA
95003, phone (408) 662-1936; or R. Mike Lea,

Brunei Univ., Uxbridge UB8 3PH, UK, phone
(44) 895-74000, ext. 2821, fax (44) 895-
58728, e-mail mike.lea@brunel.ac.uk.

NatT Debate on Achieving Quality Soft¬
ware, Jan. 29-Feb. 1, San Diego, Calif. Co¬
sponsors: Soc. for Software Quality, Am. Soc.
for Quality Control. Contact Martin Einhom,
7373 University Ave., Suite 213, La Mesa, CA
92041, phone (619) 697-0085.

February 1991

WCF 91, Western Comm. Forum, Feb. 4-6,
Phoenix, Ariz. Sponsor: NatT Eng. Consor¬
tium. Contact NEC, 303 E. Wacker Dr., Suite
740, Chicago, IL 60601, phone (312) 938-
3500, fax (312) 938-8787.

Systems/USA Tech. Conf., Feb. 11-13, Ana¬
heim, Calif. Sponsor: Am. Electronics Assoc.
Contact AEA, 5201 Great America Pkwy.,
Santa Clara, CA 95054, phone (503) 359-5873
or (408) 987-4204, fax (503) 357-3839 or
(408) 970-8565.

Fifth Int’l Conf. on Modeling Techniques
and Tools for Computer Performance Eval¬
uation, Feb. 13-15, Torino, Italy. Contact
Maria Carla Calzarossa, Dip. di Informatica e
Sistemistica, Univ. di Pavia, Via Abbiate-
grasso, 209, 27100 Pavia, Italy, phone 39 (382)
391-350, fax 39 (382) 422-881, e-mail mcc@
ipvpel.infn.it.

IWPT 91, Second Int’l Workshop on Pars¬
ing Technologies, Feb. 13-15, Cancun, Mex¬
ico. Contact Joan Maddamma, IWPT 91,
School of Computer Science, Carnegie Mellon
Univ., Pittsburgh, PA 15213, phone (412) 268-
7656, fax (412) 621-5473, e-mail jfm@cs.

ISSCC 91, 1991 IEEE Int’l Solid-State Cir¬
cuits Conf., Feb. 13-15, San Francisco. Spon-

December 1990 105

sors: IEEE Solid-State Circuits Council et al.
Contact Diane Suiters, Courtesy Associates,
655 15th St. NW, Suite 300, Washington, DC
20005, phone (202) 639-4255.

PCCS 1, First Int’l Workshop on Performa-
bility Modeling of Computer and Comm.
Systems, Feb. 18-19, Enschede, The Nether¬
lands. Contact Nico M. van Dijk, Free Univ.,
Faculty of Economics, PO Box 7161, 1Q07 MC
Amsterdam, The Netherlands, phone 31 (20)
548-7061, fax 31 (20) 462-645, e-mail
ectricvu@sara.nl.

/giv CAIA 91, Seventh IEEE Conf. on Arti-
vl?' ficial Intelligence Applications, Feb.
24-28, Miami Beach, Fla. Contact IEEE Com¬
puter Soc., 1730 Massachusetts Ave. NW,
Washington, DC 20036-1903, phone (202)
371-1013.

Fourth Topical Meeting on Robotics and
Remote Systems for Hazardous Environ¬
ments, Feb. 24-28, Albuquerque, N.M. Con¬
tact Raymond W. Harrigan, Div. 1414, Sandia
Nat’l Labs, Albuquerque, NM 87185, phone
(505) 846-6278, fax (505) 846-7425.

EDAC 91, European Design Automa-
vfty tion Conf., Feb. 25-28, Amsterdam.
Sponsor: Institution of Electrical Engineers.
Contact Secretariat, EDAC 91, CEP Consult¬
ants, 26-28 Albany St., Edinburgh EH1 3QH,
Scotland, fax 44 (31) 557-5749.

CTlI Compcon Spring 91, Feb. 25-Mar. 1,
San Francisco. Contact Compcon Spring

91, IEEE Computer Soc., 1730 Massachusetts
Ave. NW, Washington, DC 20036-1903,
phone (202) 371-1013,

March 1991

/Qjj First Great Lakes Symp. on VLSI,
NS? Mar. 1-2, Kalamazoo, Mich. Contact
Eltayeb S. Abuelyaman, Electrical Eng. Dept.,
Eastern Michigan Univ., Kalamazoo, MI
49007, fax (616) 387-4024.

Fifth Int’l Workshop on High-Level
Synthesis, Mar. 3-6, Buhlerhohe, Ger¬

many. Cosponsors: IEEE et al. Contact Raul
Camposano, IBM T.J. Watson Research Cen¬
ter, PO Box 218, Yorktown Heights, NY
10598, phone (914) 945-3871, e-mail raulc@

22nd Tech. Symp. on Computer Science
Education, Mar. 7-8, San Antonio, Texas.
Sponsor: ACM SIGSCE. Contact Nell Dale,
Computer Science Dept., Univ. of Texas at
Austin, Austin, TX 78712, phone (512) 471-
9539, e-mail ndale@cs.utexas.edu.

Fourth Computer Virus and Security
vA? Conf., Mar. 14-15, New York City.

Sponsor: Data Processing Management Assoc.
Financial Industries. Contact Judy S. Brand,
PO Box 6313, FDR Station, New York, NY
10150, phone (800) 835-2246.

Third IEE Conf. on Telecomm., Mar. 17-20,
Edinburgh, Scotland. Sponsor: Institution of

Electrical Engineers. Contact Conf. Services,
IEE, Savoy Place, London WC2R 0BL, UK,
phone 44 (71) 240-1871, fax 44 (71) 240-7735.

Symp. on Experiences with Distrib-
\£s uted and Multiprocessor Systems,
Mar. 21-22, Atlanta. Sponsor: Usenix Assoc.
Contact George Leach, AT&T Paradyne, MS
LG-129, PO Box 2826, Largo, FL 34649-2826,
phone (813) 530-2376, e-mail reggie@pdn.
paradyne.com.

Fifth SIAM Conf. on Parallel Processing
and Scientific Computing, Mar. 25-27,
Houston. Contact Soc. for Industrial and Ap¬
plied Math. Conf. Coordinator, Dept. CC0590,
3600 University City Science Center, Phila¬
delphia, PA 19104-2688, phone (215) 382-
9800, fax (215) 386-7999, e-mail siamconfs@
wharton.upenn.edu.

Advanced Research in VLSI Conf., Mar. 25-
27, Santa Cruz, Calif. Sponsors: Univ. of Cali¬
fornia at Santa Cruz, Univ. of California at
Berkeley. Contact Kevin Karplus, Computer
Eng., Univ. of California at Santa Cruz, Santa
Cruz, CA 95064, Internet kaiplus@ce.ucsc.
edu.

Auto Carto 10,10th Int’l Symp. on Auto¬
mated Cartography, Mar. 25-28, Baltimore.
Cosponsors: Am. Cartographic Assoc, et al.
Contact ACSM/ASPRS/Auto Carto 10, 5410
Grovesnor Lane, Bethesda, MD 20814.

CEEDA 91, Int’l Conf. on Concurrent Eng.
and Electronic Design Automation, Mar.
26-28, Bournemouth, Dorset, UK. Sponsors:
Institution of Electrical Engineers et al. Con¬
tact Sa’ad Medhat, Bournemouth Polytechnic,
Poole House, Talbot Campus, Fern Barrow,
Dorset BH12 5BB, UK, phone 44 (81) 595-
492, fax 44 (81) 595-368, e-mail saiad
medhat @ eurolom.ie.

10th IEEE Int’l Phoenix Conf. on Comput¬
ers and Comm., Mar. 27-30, Scottsdale, Ariz.
Sponsors: IEEE, IEEE Comm. Soc. Contact
Oris Friesen, Bull HN, PO Box 8000, MS A93,
Phoenix, AZ 85066, phone (602) 862-5200,
e-mail friesen@system-m.phx.bull.com.

April 1991

24th Computer Simulation Conf., Apr. 1-5,
New Orleans. Sponsor: Soc. for Computer
Simulation. Contact George W. Zobrist, Com¬
puter Science Dept., Univ. of Missouri at
Rolla, Rolla, MO 65401, phone (314) 341-
4836, e-mail c2816@umrvmb.umr.edu.

Dasfaa 91, Second Int’l Symp. on
Database Systems for Advanced Ap¬

plications. Apr. 2-4, Tokyo. Sponsor: Infor¬
mation Processing Soc. of Japan. Contact Ya-
hiko Kambayashi, Computer Science Dept.,
Kyushu Univ., 6-10-1 Hakozaki, Higashi Fu¬
kuoka 812, Japan, phone 81 (92) 641-1101,
ext. 5407; or Yoshifumi Masunaga, Univ. of
Library and Information Science, 1-2 Kasuga,
Tsukuba, Ibaraki 305, Japan, phone 81 (298)
52-0511, ext. 340, fax 81 (298) 52-4326,
e-mail masunaga@ulis.ac.jp.

Flairs 91, Florida Artificial Intelligence Re¬
search Symp., Apr. 2-5, Cocoa Beach, Fla.
Sponsor: Florida Artificial Intelligence Re¬
search Soc. Contact Avelino J. Gonzalez,
Computer Eng. Dept., Univ. of Central Flor¬
ida, Orlando, FL 32816, phone (407) 281-
5027, e-mail fdgonzal%ucflvm.bitnet@
cunyvm.cuny.edu.

SAC 91,1991 Symp. on Applied
Computing, Apr. 3-5, Kansas City, Mo.

Sponsor: Univ. of Missouri — Kansas City.
Contact Richard G. Hetherington, SAC 91,
Univ. of Missouri — Kansas City, Computer
Science Telecommunications Program, 5100
Rockhill Rd„ Kansas City, MO 64110-2499,
phone (816) 235-2399.

Third Symp. on Integrated Ferroelectrics,
Apr. 3-5, Colorado Springs, Colo. Contact
Conf. Secretary, Microelectronics Research
Lab, Univ. of Colorado at Colorado Springs,
PO Box 7150, Colorado Springs, CO 80933-
7150, phone (719) 593-3488, fax (719) 594-
4257.

Computer Graphics and Education 91, Apr.
4-6, Barcelona, Spain. Sponsor: Int’l Federa¬
tion for Information Processing. Contact Steve
Cunningham, Computer Science Dept, Cali¬
fornia State Univ. at Stanislaus, Turlock, CA
95380, phone (209) 667-3176, e-mail rsc@
altair.csustan.edu; or Roger Hubbold, Com¬
puter Science Dept., Univ. of Manchester, Ox¬
ford Road, Manchester M13 9PL, UK, phone
(44) 61-275-6158, e-mail hubbold@uk.ac.

(ffjj) IEEE Infocom 91, Conf. on Computer
Comm., Apr. 7-11, Miami, Fla. Cospon¬

sors: IEEE Computer Soc. and Comm. Soc.
Contact N. Shacham, IEEE Infocom 91, SRI
Int’l, 333 Ravenswood Ave., Menlo Park, CA
94025, phone (415) 859-5710, e-mail
shacham@sri.com.

1991 IEEE Int’l Conf. on Robotics and Auto¬
mation, Apr. 7-12, Sacramento, Calif. Spon¬
sor: IEEE Robotics and Automation Soc. Con¬
tact Robotics and Automation, PO Box 3216,
Silver Spring, MD 20918, phone (301) 434-
1990.

jWKjt IMS 91, First IEEE Int’l Workshop on
Interoperability in Multidatabase

Systems, Apr. 8-9, Kyoto, Japan. Contact
Ahmed K. Elmagarmid, Purdue Univ., Com¬
puter Sciences Dept., West Lafayette, IN
47907, phone (317) 494-1998; or Yutaka Mat¬
sushita, Instrumentation Dept., Keio Univ.,
Hiyoshi, Yokohama, Japan, phone 81 (44) 63-
1141, ext. 3564.

DCC 91, Data Compression Conf.,
Apr. 8-10, Snowbird, Utah. Sponsor:

IEEE Computer Soc. Tech. Committee on
Computer Comm., NASA/CESDIS. Contact
Martin Cohn, Computer Science Dept., Bran¬
ded Univ., Waltham, MA 02254, phone (617)
736-2705, fax (617) 736-2741, e-mail marty@
cs.brandeis.edu.

ASPLOS 4, Fourth Int’l Conf. on
Architectural Support for Program¬

ming Languages and Operating Systems,
Apr. 8-11, Santa Clara, Calif. Sponsor: ACM.

106 COMPUTER

Contact Bob Rau, Hewlett-Packard Labs, 1501
Page Mill Rd., Bldg. 3U, Palo Alto, CA 94304,
fax (415) 857-8558, e-mail rau@hplabs.hp.

Seventh Int’l Conf. on Data Eng., Apr.
V5Z 8-12, Kobe, Japan. Contact Ming T.
(Mike) Liu, Computer and Information Sci¬
ence Dept., Ohio State Univ., 2036 Neil Ave.,
Columbus, OH 43210-1277, phone (614) 292-
1837, e-mail hu@cis.ircc.ohio-state.edu; or
Data Eng. 91, IEEE Computer Soc., 1730 Mas¬
sachusetts Ave. NW, Washington, DC 20036-
1903, phone (202) 371-1013, fax (202) 728-

IFIP Working Conf. on Modeling in Com¬
puter Graphics, Apr. 8-12, Tokyo. Sponsor:
IFIP TC 5/WG 5.10. Contact Tosiyasu L. Ku-
nii. Information Science Dept., Faculty of To¬
kyo, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-
ku, Tokyo 113, Japan, phone 81 (3) 816-1783,
fax 81 (3) 818-4607, e-mail b39756@tansei.
cc.u-tokyo.ac.jp.

/£|^j ETC 91, 1991 European Test Conf.,
Apr. 10-12, Munich, Germany. Spon¬

sor: VDE (Zentralstelle Tagungen und Semi-
nare). Contact Peter Stilke, VDE, Streseman-
nallee 15, D-6000 Frankfurt 70, Germany,
phone (69) 6308-203, fax (69) 6308-273.

RTA 91, Fourth Int’l Conf. on Rewriting
Techniques and Applications, Apr. 10-12,
Como, Italy. Sponsor: State Univ. of Milan.
Contact G. Degli Antoni or Marelva Bianchi,
Dip. di Scienze Dell’ Informazione, Univ. di
Milano, Via Milano Moretto da Brescia 9,1-
20133 Milano, Italia, phone 39 (02) 7575-201,
fax 39 (02) 7611-0556, e-mail gdantoni@
imisiam.bitnet.

14th IEEE Workshop on Design for
Testability, Apr. 15-18, Vail, Colo.

Contact T.W. Williams, IBM, PO Box 1900,
Dept. J22/02SR, Boulder, CO 80301-9191.

Ninth IEEE VLSI Test Symp., Apr. 16-
18, Atlantic City, N.J. Cosponsor: IEEE

Philadelphia Section. Contact Mukund Modi,
Naval Air Eng. Center, ATE Software Center,
Code: 52514, Lakehurst, NJ 08733, phone
(201) 323-7002, fax (201) 323-7445.

®16th IntT Symp. on Computer
Systems, Apr. 16-19, Monterrey, NL,

Mexico. Sponsor: Inst. Tecnologico y de Estu-
dios Superiores de Monterrey. Contact Carlos
D. Hinojosa A., Direction de Carrera ISC,
ITESM, Sue. de Correos T, CP.64849, Mon¬
terrey, NL, Mexico, phone 52 (83) 58-2000,
fax 52 (83) 58-8931.

(^) CHDL 91,10th Int’l Symp. on Com-
puter Hardware Description Lan¬

guages and their Applications, Apr. 22-24,
Marseille, France. Cosponsors: Int’l Federa¬
tion for Information Processing et al. Contact
Dominique Borrione, Imag/Artemis, BP 53X,
38041 Grenoble Cedex, France, phone (33)
7651-4604, ext. 5240, fax (33) 7651-9637,
e-mail borrione@imag.imag.fr.

Second European Distributed Memory
Computing Conf., Apr. 22-24, Munich, Ger¬
many. Cosponsors: Gesellschaft fur Informa-

tik et al. Contact Amdt Bode, Computer Sci¬
ence, Technische Univ. Munich, POB 20-24-
20, D-8000 Munich 2, Germany, e-mail
bode@infovax.informatik.tumuenchen.dbp.de.

KMET 91, IntT Conf. on Knowledge Model¬
ing and Expertise Transfer, Apr. 22-24, So¬
phia Antipolis, France. Cosponsors: Assoc.
Francaise pour la Cybemetique Economique et
Technique et al. Contact KMET 91, Univ. de
Nice, Sophia Antipolis, CNRS, 13S-LISAN,
Daniele Herin-Aime, bat. 4, rue A. Einstein,
06560, Valbonne, France, fax (33) 92-94-28-
98, e-mail dh@cerisi.cerisi.fr.

Second IntT Conf. on Systems Integra¬
ls^ tion, Apr. 22-25, Morristown, N.J. Co¬
sponsors: New Jersey Inst, of Technology et al.
Contact Peter A. Ng, Computer and Informa¬
tion Science Dept., New Jersey Inst, of Tech¬
nology, University Heights, Newark, NJ
07102, phone (201) 596-3387, e-mail ng_p@
vienna.njit.edu.

NCGA 91, 1991 Nat’l Computer Graphics
Assoc. Conf., Apr. 22-25, Chicago. Contact
NCGA, 2722 Merrilee Dr., Suite 200, Fairfax,
VA 22031, phone (800) 225-6242 or (703)
698-9600.

/£|^j CHI 91,1991 Conf. on Human Factors
\S^ in Computing Systems, Apr. 27-May 2,
New Orleans. Sponsor: ACM. Contact Keith
Butler, Boeing, Advanced Technology Center,
PO Box 24346, M/S 7L-64, Seattle, WA 98124,
phone (206) 865-3389; or June Davis, 13 An¬
napolis St., Annapolis, MD 21401, phone
(301) 269-6801.

ECF 91, Eastern Comm. Forum, Apr. 29-
May 1, Washington, DC. Sponsor: Nat’l Eng.
Consortium. Contact NEC, 303 E. Wacker Dr.,
Suite 740, Chicago, IL 60601, phone (312)
938-3500, fax (312) 938-8787.

/gjjh IntT Conf. on Cognitive Sciences, Apr.
29-May 2, Montreal. Cosponsors:

AFCET et al. Contact Gilles Gauthier, Math,
and Computer Science Dept., Univ. of Quebec,
PO Box 8888, Station A, Montreal, Que., Can¬
ada H3C 3P8, phone (514) 987-8212, fax (514)
987-8477.

(^f^l Fifth IntT Parallel Processing Symp.,
Apr. 30-May 2, Anaheim, Calif. Spon¬

sor: IEEE Computer Soc. Orange County
Chapter. Contact Larry H. Canter, Computer
Systems Approach, 1140 S. Raymond Ave.,
Suite B, Fullerton, CA 92631, phone (714)
738-3414, fax (714) 738-3470.

May 1991

22nd Pittsburgh Conf. on Modeling and
Simulation, May 2-3, Pittsburgh. Sponsor:
Univ. of Pittsburgh. Contact William G. Vogt
or Marlin H. Mickle, Modeling and Simulation
Conf., 348 Benedum Eng. Hall, Univ. of Pitts¬
burgh, Pittsburgh, PA 15261.

Fifth SIAM IntT Symp. on Domain Decom¬
position Methods for Partial Differential
Equations, May 6-8, Norfolk, Va. Contact

Soc. for Industrial and Applied Math., Dept.
CC0590, 3600 University City Science Center,
Philadelphia, PA 19104-2688, phone (215)
382-9800, fax (215) 386-7999, e-mail
siamconfs @ wharton.upenn.edu.

SID 91, 1991 IntT Symp., Seminar, and Ex¬
hibition, May 6-10, Anaheim, Calif. Sponsor:
Soc. for Information Display. Contact SID, c/o
Palisades Inst, for Research Services, 201 Var-
ick St., Suite 1140, New York, NY 10014,
phone (212) 620-3371, fax (212) 620-3379.

IEEE Pacific Rim Conf. on Comm., Comput¬
ers, and Signal Processing, May 9-10, Victo¬
ria, B.C., Canada. Cosponsors: IEEE Victoria
Section, Univ. of Victoria. Contact Technical
Program Committee, c/o Pan Agathoklis, Elec¬
trical and Computer Eng. Dept., Univ. of Vic¬
toria, PO Box 3055, Victoria, B.C., Canada
V8W 3P6, phone (604) 721-8618, fax (604)
721-8676.

CBMS 91, Fourth IEEE Symp. on
Computer-Based Medical Systems,

May 12-14, Baltimore. Cosponsors: IEEE
Computer Soc., IEEE Eng. in Medicine and Bi¬
ology Soc., and IEEE Baltimore Section. Con¬
tact Jeffery C. Lesho, Johns Hopkins Univ.,
Applied Physics Lab., Bldg. 2-257, Johns
Hopkins Rd., Laurel, MD 20723-6099, phone
(301) 953-5000, ext. 8057.

CICC 91, IEEE Custom Integrated Circuits
Conf., May 12-15, San Diego, Calif. Contact
Jim Lipman, VLSI Technology, 1109 McKay
Dr. MS-32, San Jose, CA 95131, phone (408)
434-7673.

44th Conf. of the Soc. for Imaging Science
and Technology, May 12-17, St. Paul, Minn.
Contact SPSE, 7003 Kilworth Lane, Spring-
field, VA 22151, phone (703) 642-9090, fax
(703) 642-9094.

ICSE 13,13th IntT Conf. on Software
vs? Eng., May 13-17, Austin, Texas. Co¬
sponsor: ACM. Contact ICSE 13, Bryan Fu¬
gate, MCC, 3500 W. Balcones Center Dr., Aus¬
tin, TX 78759-6509, phone (512) 338-3330;
MCC, PO Box 200015, Austin, TX 78720-
0015; or ICSE 13, IEEE Computer Soc., 1730
Massachusetts Ave. NW, Washington, DC
20036-1903, phone (202) 371-1013.

/£3j\ CompEuro 91, IEEE IntT Conf. on
vftz Advanced Computer Technology, Re¬
liable Systems, and Applications, May 13-
17, Bologna, Italy. Cosponsors: IEEE Region 8
et al. Contact CompEuro 91 Conf. Secretariat,
c/o Sercoop, via Crociali 2, 40138 Bologna,
Italy, phone 39 (51) 300-811, fax 39 (51) 309-
477; or Vito A. Monaco, Dip. di Elettronica In-
formatica E Sistemistica, Univ. di Bologna,
Viale Risorgimento 2, 40136, Bologna, Italy,
fax 39 (51) 644-3073.

Ada-Europe Athens 91 Conf., May 13-17,
Athens. Cosponsors: Ada-Europe et al. Con¬
tact Z. Kaplanidis, Zita Tourist Club, 46 Voulis
St., GR - 10558 Athens, Greece, phone 30 (1)
323-9744/7, fax 30 (1) 324-1720.

North Am. Fuzzy Information Processing
Soc. Workshop, May 15-17, Columbia, Mo.
Contact Jim Keller, Electrical and Computer

December 1990 107

Eng., Univ. of Missouri — Columbia, Colum¬
bia, MO 65211, phone (314) 882-7339, fax
(314) 882-0397.

^ Int’l Symp. on Software Reliability
Eng., May 17-18, Austin, Texas. Co¬

sponsors: IEEE Computer Soc. Tech. Commit¬
tee on Software Eng. and the Nat’l Aeronautics
and Space Administration. Contact Anneliese
von Mayrhauser, Computer Science Dept., Illi¬
nois Inst, of Technology, 600 S. Lambert Rd.,
Glen Elyn, IL 60137, phone (708) 790-4385,
e-mail csavm@karl.iit.edu.

Workshop on Parallel and Distributed De¬
bugging, May 20-21, Santa Cruz, Calif. Co¬
sponsors: ACM, US Navy Office of Naval Re¬
search. Contact Bart Miller, Computer Science
Dept., Univ. of Wisconsin, 1210 W. Dayton
St„ Madison, WI 53706, phone (608) 263-
3378, Internet bart@cs.wisc.edu.

1991 IEEE Symp. on Research in Secu-
rity and Privacy, May 20-22, Oakland,

Calif. Sponsor: IEEE Computer Soc. Tech.
Committee on Security and Privacy. Contact
Daniel Schnackenberg, Boeing, MS 9P-64, PO
Box 3999, Seattle, WA 98124, phone (206)
657-5595, e-mail schnackenberg@
dockmaster.ncsc.mil.

Second Physical Design Workshop, May 20-
22, Laurel Highlands, Pa. Sponsor: ACM
SIGDA. Contact Antun Domic, HL02-3J3,
DEC, 77 Reed Rd., Hudson, MA 01749, e-mail
domic@cadsys.dec.com.

ICDCS 91,11th Int’l Conf. on Distrib-
uted Computing Systems, May 20-24,

Arlington, Texas. Contact Bill D. Carroll,
Computer Science Eng. Dept., Univ. of Texas
at Arlington, Box 19015, Arlington, TX
76019-0015, phone (817) 273-3785, e-mail
carroll@evax.ari.utexas.edu.

I^j^l SESAW, Fourth Software Eng. Stan-
VS7 dard Application Workshop, May 21-
23, San Diego, Calif. Contact Vera V. Edel-
stein, Nynex, 500 Westchester Ave., White
Plains, NY 10604, phone (914) 683-2888.

SCAI 91, Third Scandinavian Conf. on Arti¬
ficial Intelligence, May 21-24, Roskilde,
Denmark. Contact Brian Mayoh, Computer
Science Dept., Aarhus Univ., Ny Munkegade,
Bldg. 540, DK-8000 Aarhus C, Denmark,
phone 45 (86) 127188, fax 45 (86) 135725,
e-mail brian@daimi.aau.dk.

Second Int’l Conf. on Algebraic Methodol¬
ogy and Software Technology, May 22-24,
Iowa City, Iowa. Contact Teodor Rus, Com¬
puter Science Dept., Univ. of Iowa, Iowa City,
IA 52242, phone (319) 335-0694, e-mail rus@
herky.cs.uiowa.edu.

Melecon 91, Fifth Mediterranean Electro¬
technical Conf., May 22-24, Ljubljana, Yugo¬
slavia. Cosponsors: IEEE Region 8 Yugosla¬
via Section, et al. Contact Melecon 91 Secre¬
tariat, Fakulteta za elektrotehniko, Trzaska 25,
61001 Ljubljana, Yugoslavia, fax 38 (61) 264-
990.

Computer Animation 91, May 22-25, Gene¬
va, Switzerland. Cosponsors: Computer

Graphics Soc. Contact Nadia M. Thalmann,
Mira Lab CUI, Univ. of Geneva, 12 rue du Lac,
CH 1207, Geneva, Switzerland, phone 41 (22)
787-6581, fax 41 (22) 735-3905, e-mail
thalmann@uni2a.unige.ch.

21st Int’l Symp. on Multiple-Valued Logic,
May 26-29, Victoria, Canada. Contact D.M.
Miller, Computer Science Dept., Univ. of Vic¬
toria, PO Box 1700, Victoria, B.C., Canada,
V8W 2Y2, phone (604) 721-7220, fax (604)
721-7292, e-mail dmill@csr.uvic.cdn.

ISCA 18,18th Int’l Symp. on Com-
puter Architecture, May 26-30, Toron¬

to. Cosponsor: ACM. Contact K.C. Smith,
Univ. of Toronto, Electrical Eng. Dept., Tor¬
onto, Ont. M5S 1A4, Canada, phone (416) 978-
5033.

ICCI 91, Int’l Conf. on Computing and In¬
formation, May 27-29, Ottawa, Canada.
Sponsors: Carleton Univ, Ottawa; Natural Sci¬
ences and Eng. Research Council of Canada.
Contact Frank Fiala, School of Computer Sci¬
ence, Carleton Univ., Ottawa, Canada K1S
5B6, phone (613) 788-4333, fax (613) 788-
4334, e-mail icci@scs.carleton.ca.

Fifth Israel Conf. on Computer Sys-
vt/ terns and Software Eng., May 28-29,
Herzlia, Israel. Sponsors: IEEE Computer Soc.
Israeli Chapter et al. Contact M. Winokur, c/o
ORTRA, PO Box 50432, Tel Aviv 61500, Is¬
rael, phone 972 (3) 664-825, fax 972 (3) 660-
952.

June 1991

Workshop on Directions in Auto-
mated CAD-Based Vision, June 2-3,

Maui, Hawaii. Contact Linda Shapiro, Com¬
puter Science and Eng. Dept., FR-35, Univ. of
Washington, Seattle, WA 98195, phone (206)
543-2196, fax (206) 543-3842.

Fourth Int’l Conf. on Industrial and
Eng. Applications of Artificial Intelli¬

gence and Expert Systems, June 2-5, Kauai,
Hawaii. Sponsors: ACM et al. Contact Moonis
Ali, Univ. of Tennessee Space Inst., MS15,
B.H. Goethert Pkwy., Tullahoma, TN 37388-
8897, phone (615) 455-0631, ext. 236, fax
(615) 454-2354, e-mail alif@utsivl.bitnet.

11th Int’l Conf. on Decision-Support
Systems, June 3-5, Manhattan Beach, Calif.
Sponsor: Inst, for Management Sciences. Con¬
tact TIMS, 290 Westminster St, Providence,
RI 02903.

First Golden West Int’l Conf. on Intelligent
Systems, June 3-5, Reno, Nev. Sponsor: Int’l
Soc. of Mini and Microcomputers. Contact
Carl G. Looney, CS Dept., Univ. of Nevada,
Reno, NV 89557, phone (702) 784-6927,
e-mail looney@tahoe.unr.edu.

/gjj\ CVPR 91, IEEE Computer Soc. Conf.
™3y on Computer Vision and Pattern Rec¬
ognition, June 3-7, Lahaina, Maui, Hawaii.
Contact Shahriar Negahdaripour, Electrical
Eng. Dept., Univ. of Hawaii at Manoa, 2540

Dole St., Honolulu, HI 96822, e-mail
shahriar@wiliki.eng.hawaii.edu.

20th Mumps Users Group Meeting, June 3-
7, New Orleans. Contact Mumps Users Group,
4321 Hartwick Rd., Suite 100, College Park,
MD 20740, phone (301) 779-6555, fax (301)
779-7674.

Symp. on Solid Modeling Foundations and
CAD/CAM Applications, June 5-7, Austin,
Texas. Sponsor: ACM SIGGraph. Contact
Joshua Turner, CII 7015, RDRC, Rensselaer
Polytechnic Inst., Troy, NY 12180-3590,
phone (518) 276-6751, fax (518) 276-2702,
e-mail jturner@rdrc.rpi.edu.

Second Eurographics Workshop on Object-
Oriented Graphics, June 5-7, The Nether¬
lands. Sponsor: Dutch Center for Math, and
Computer Science (CWI). Contact Marja
Hegt, CWI, Kruislaan 413, 1098 SJ Amster¬
dam, The Netherlands, phone 31 (20) 592-
4058, fax 31 (20) 592-4199, e-mail marja@
cwi.nl.

Parle 91, Conf. on Parallel Architectures
and Languages Europe, June 10-13, Eind¬
hoven, The Netherlands. Cosponsors: Com¬
mission of European Communities et al. Con¬
tact F. Stoots, Philips Research Labs, PO Box
80.000, 5600 JA Eindhoven, The Netherlands,
fax 31 (40) 744-758, e-mail stoots@dooma.
prl.philips.nl.

ISCAS 91,24th IEEE Int’l Symp. on Cir¬
cuits and Systems, June 11-14, Singapore.
Sponsor: IEEE Circuits and Systems Soc. Con¬
tact ISCAS 91 Secretariat, Comm. Int’l Asso¬
ciates, 44/46 Tanjong Pagar Rd., Singapore
0208, phone (65) 226-2823, fax (65) 226-
2877.

/rjjk SCM 3, Third Int’l Software Configu-
ration Management Workshop, June

12-14, Trondheim, Norway. Cosponsors:
ACM, et al. Contact Reidar Conradi, Computer
Systems and Telematics Div., Norwegian Inst,
of Technology, N-7034 Trondheim, Norway,
phone 47 (7) 593-444; or Peter Feiler, Software
Eng. Inst., Carnegie Mellon Univ., Pittsburgh,
PA 15213-3890, phone (412) 268-7790,
e-mail phf@sei.cmu.edu.

1991 ACM Symp. on Personal and Small
Computers, June 12-14, Toronto. Cospon¬
sors: Nat’l Research Council of Canada et al.
Contact Michael Bauer, Computer Science
Dept., Middlesex College, Univ. of Western
Ontario, London, Ont., Canada N6A 5B7,
e-mail bauer@csd.uwo.ca or bauer@uwovax.

fflKjt DAC 91, 28th ACM/IEEE Design
Automation Conf., June 16-21, San

Francisco. Contact MP Associates, 7490 Club¬
house Rd., Suite 102, Boulder, CO 80301,
phone (303) 530-4333.

1991 ACM Int’l Conf. on Supercomputing,
June 17-21, Cologne, Germany. Cosponsors:
Gesellschaft fur Informatik et al. Contact
Ruediger Esser, FKA-ZAM, D-5170 Juelich,
Germany, phone 49 (2461) 61-6588, fax 49
(2461) 61-6656, e-mail zdv003@djukfall.
bitnet.

COMPUTER

Eighth Int’l Conf. on Testing Computer
Software, June 17-21, Washington, DC.
Sponsor: Data Processing Management Assoc.
Educational Foundation. Contact Genevieve
Houston-Ludlam, Frontier Technologies, 190
Admiral Cochran Dr., Suite 180, Annapolis,
MD 21401, phone (301) 266-8244, fax (301)
224-3840.

29th Meeting of the Assoc, for Computa¬
tional Linguistics, June 18-21, Berkeley,
Calif. Contact Don Walker, Bellcore, MRE
2A379, 445 South St., Box 1910, Morristown,
NJ 07960-1910, phone (201) 829-4312, e-mail
walker@flash.bellcore.com.

CGI 91, Int’l Conf. on Computer Graphics,
June 22-28, Cambridge, Mass. Cosponsors:
Computer Graphics Soc., MIT. Contact Bar¬
bara Dullea, Ocean Eng. Dept., MIT Rm. 5-
435, 77 Massachusetts Ave., Cambridge, MA
02139, fax (617) 253-8125, e-mail barbara@
deslab.mit.edu.

1991 IEEE Int’l Symp. on Information The¬
ory, June 23-28, Budapest, Hungary. Contact
Anthony Ephremides, Electrical Eng. Dept.,
Univ. of Maryland, College Park, MD 20742,
phone (301) 405-3641, arpanet tony@eng.
umd.edu.

ICANN 91, Int’l Conf. on Artificial Neural
Networks, June 24-28, Espoo, Finland. Co¬
sponsors: IEEE Neural Networks Council,
Int’l Neural Network Soc. Contact Congress
Management Systems, PO Box 151, SF-00141
Helsinki, Finland, fax 358 (0) 170-122.

ETCS 21, 21st Int’l Symp. on Fault-
Tolerant Computing, June 25-27,

Montreal. Sponsor: IEEE Computer Soc. Tech.
Committee on Fault-Tolerant Computing.
Contact Vinod K. Agarwal, McGill Univ.,
Electrical Eng. Dept., 3480 University St.,
Montreal, Que., Canada H3A 2A7, phone
(514) 398-7136, fax (514) 398-4470, e-mail
agarwal@spock.ee.mcgill.ca.

Compass 91, Sixth Conf. on Computer As¬
surance Systems Integrity, Software Safety,
and Process Security, June 25-27, Gaithers¬
burg, Md. Cosponsors: IEEE Aerospace and
Electronics Soc., IEEE Nat’l Capital Area
Council. Contact Dolores R. Wallace, Nat’l
Inst, of Standards and Technology, Gaithers¬
burg, MD 20899, phone (301) 975-3340,
e-mail wallace@swe.ncsl.nist.gov.

Arith 10, 10th Symp. on Computer
Arithmetic, June 26-28, Grenoble,

France. Cosponsors: ACM et al. Contact Jean-
Michel Muller, Lab. LIP-IMAC, Ens. Lyon,
69364 Lyon Cedex 07, France, phone 33 (72)
72-8229.

314-73100; or Michael H. Rhodes, Toshiba
America MRI, 280 Utah Ave., South San Fran¬
cisco, CA 94080, phone (415) 875-2909.

SIGGraph 91, July 30-Aug. 1, Las Ve-
\Az gas. Sponsor: ACM. Contact Assoc, for
Computing Machinery, 11 W. 42nd St., New
York, NY 10036, phone (212) 869-7440.

July 1991

CAR 91, Fifth Int’l Symp. on Com-
puter-Assisted Radiology, July 3-6,

Berlin. Sponsor: Tech. Univ. Berlin. Contact
Heinz U. Lemke, Inst, for Tech. Computer Sci¬
ence, Sekr CG-FR3-3, Franklinstrasse 28-29,
D-1000, Berlin 10, Germany, phone 49 (30)

August 1991

SSD 91, Second Symp. on Large Spa¬
vin tial Databases, Aug. 28-30, Zurich,
Switzerland. Contact H.J. Schek, Inst, fur In¬
formation Systeme, Eth Zentrum, 8092 Zurich,
Switzerland, phone 41 (1) 254-7240.

September 1991

VLDB 91, 17th Int’l Conf. on Very
Large Data Bases, Sept. 3-6, Barce¬

lona, Spain. Sponsors: IEEE Computer Soc.
Tech. Committee on Data Eng. et al. Contact
Guy M. Lohman, IBM Almaden Research
Center, Dept. K55, Bldg. 801, 650 Harry Rd.,
San Jose, CA 95120-6099, e-mail lohman@
ibm.com (Internet), lohman@ almaden
(Bitnet).

Compsac 91, 15th Int’l Computer
Software and Applications Conf.,

Sept. 11-13, Tokyo. Cosponsor: Information
Processing Soc. of Japan. Contact Stephen
S. Yau, Univ. of Florida, CIS Dept., Rm.
301, Gainesville, FL 32611, phone (904) 335-

October 1991

1^^ IEEE Workshop on Visual Motion,
vAz Oct. 6-9, Princeton, N.J. Contact Tho¬
mas S. Huang, Coordinated Science Lab, Univ.
of Illinois, 1101 W. Springfield Ave., Urbana,
IL 61801, phone (217) 333-6912.

Fifth Software Eng. Inst. Conf. on
Software Eng., Oct. 7-8, Pittsburgh.

Sponsor: SEI. Contact James E. Tomayko,
SEI, Carnegie Mellon Univ., 4500 Fifth Ave.,
Pittsburgh, PA 15213-3890, phone (412) 268-
6806, fax (412) 268-5758, e-mail jet@sei.

/ffji Workshop on Experimental Distrib-
vAx uted Systems, Oct. 12, Huntsville, Ala.
Contact Raif M. Yanney, TRW, 1 Space Park,
DH2/2328, Redondo Beach, CA 90278, phone
(213) 764-6033.

11th Symp. on Mass Storage Systems,
^Az Oct. 13-17, Monterey, Calif. Sponsor:
IEEE Computer Soc. Tech. Committee on
Mass Storage. Contact Bernard T. O’Lear,
NCAR, PO Box 3000, Boulder, CO 80307,
phone (303) 497-1268.

(jgji RIDT 91, Second Int’l Workshop on
vAZ Raster Imaging and Digital Typogra¬

phy, Oct. 14-15, Boston. Contact Robert A.
Morris, Math, and Computer Science Dept.,
Univ. of Massachusetts at Boston, Harbor
Campus, Boston, MA 02125-3393, phone
(617) 287-6466, e-mail ridt91-request@cs.
umb.edu.

(£t)b ICCD 91, IEEE Int’l Conf. Symp. on
Computer Design, Oct. 14-16, Cam¬

bridge, Mass. Cosponsors: IEEE Computer
Soc. and IEEE Circuits and Systems Soc. Con¬
tact ICCD 91, IEEE Computer Soc., 1730 Mas¬
sachusetts Ave. NW, Washington, DC 20036-
1903, phone (202) 371-1013.

I6th Conf. on Local Computer Net-
VftZ works, Oct. 14-17, Minneapolis, Minn.
Cosponsor: IEEE Computer Soc. Technical
Committee on Computer Comm. Contact
James F. Mollenauer, 16th LCN Conf., Artel
Communications, 22 Kane Industrial Dr.,
Hudson, MA 01749, phone (508) 562-2100,
fax (508) 562-6942.

Sixth Int’l Workshop on Software
Specification and Design, Oct. 25-26,

Como, Italy. Contact Jean-Pierre Finance,
CRIN, Campus Scientifique, BP 239 54000
Nancy, France, e-mail finance@loria.crin.fr.

ITC 91, Int’l Test Conf., Oct. 28-Nov.
nAz l, Nashville, Tenn. Cosponsor: IEEE
Philadelphia Section. Contact IEEE Computer
Soc., 1730 Massachusetts Ave. NW, Washing¬
ton, DC 20036-1903, phone (202) 371-1013.

November 1991

TAI91, IEEE Computer Soc. Conf. on
^Az Tools for Al, Nov. 10-13, San Jose,
Calif. Contact Nikolaus G. Bourbakis, 4138
Moonflower Ct., San Jose, CA 95135, phone
(408) 284-6494.

(ffil ICCAD 91, IEEE Int’l Conf. on Com-
puter-Aided Design, Nov. 11-14, Santa

Clara, Calif. Cosponsor: IEEE Circuits and
Systems Soc. Contact ICCAD 91, IEEE Com¬
puter Soc., 1730 Massachusetts Ave. NW,
Washington, DC 20036-1903, phone (202)
371-1013.

Supercomputing 91, Nov. 18-22, Al-
\5& buquerque, N.M. Cosponsor: ACM.
Contact Raymond L. Elliott, Computing and
Comm. Div., MS B260, Los Alamos Nat’l Lab,
Los Alamos, NM 97545; or Supercomputing
91, IEEE Computer Soc., 1730 Massachusetts
Ave. NW, Washington, DC 20036-1903,
phone (202) 371-1013.

December 1991

World Congress on Expert Systems,
nAZ Dec. 16-19, Orlando, Fla. Cosponsors:
Int’l Assoc, of Knowledge Engineers et al.
Contact World Congress on Expert Systems,
c/o Congress Secretariat, Congrex (USA),
Inc., 7315 Wisconsin Ave., Suite 404E,
Bethesda, MD 20814, phone (301) 469-3355,
fax (301) 469-3360.

December 1990 109

The Seventh IEEE Conference on

ARTIFICIAL
INTELLIGENCE
APPLICATIONS
February 24-28, 1991
Fontainebleau Hotel
Miami Beach, Florida
Se June Hong, General Chair
Tim Finin, Program Chair
Dan O’Leary, Tutorial Chair
Jeff Pepper, Publicity Chair

T
X he Seventh IEEE Conference on Artificial Intelligence Applications (CAIA-91) is devoted to the application of artificial intelligence

techniques to real-world problems. This year’s conference will focus on both case studies and advances in AI techniques and principles
that underlie knowledge-based systems and which enable ever more ambitious real-world applications. This conference provides a
forum for such synergy between applications and AI techniques.

Tutorial sessions will be held Sunday, February 24 and Monday, February 25. The technical program sessions will be Tuesday,
February 26 through Thursday, February 28.

THE CONFERENCE KEYNOTE ADDRESS, titled “Technology and People”, will be presented by Eric Bloch, former director of the
National Science Foundation.

PLENARY TALKS:
■ Towards Intelligent Systems in the DoD, by Maj. Steve Cross, DARPA
■ AI in Biology and Challenges of the Human Genome Project, by Bruce Buchanan, University of Pittsburgh

INVITED SPEAKERS:
■ Application Projects at ICOT, by K. Furukawa, ICOT
■ “Applying Commonsense” - Necessity or Oxymoron?, by Doug Lenat, MCC
■ AI in the ESPRIT Program, by D. E. Talbot, ESPRIT

PANELS:

■ Multi-Media and AI: Challenges and Opportunities
■ Is Qualitative Physics Practical?
■ AI in Design: User Perspectives

TUTORIALS:
■ Blackboard Applications
■ User Modeling
■ Model-Based Diagnosis
■ Object Oriented Programming and Expert Systems
■ Pattern Recognition and AI
■ Constraint-Based Reasoning

■ When Does Truth Maintenance Pay Off?
■ Generic and Consensus Reality Knowledge Bases and Their Use
■ The Role of Standards in Knowledge Based Systems

■ Case-Based Reasoning
■ Expert Systems for Project Managers
■ AI in Engineering Design
■ Verification: Techniques and Solutions
■ AI in Scheduling
■ Integrating Knowledge-based Systems and Hypermedia

PAPER SESSION TOPICS: ■ Molecular Biology Applications ■ Innovative Database Technology ■ Knowledge Acquisition and
Refinement ■ Rule Based System Theory ■ Visualization and Cooperative Systems ■ Hybrid Knowledge Representation Languages ■
Business/Management Decision Support ■ Image Understanding ■ Design and Manufacturing ■ Machine Learning ■ Design,
Optimization and Decision Theory ■ Scheduling and Planning ■ Constraint/Belief Network ■ Dynamic Planning ■ Monitoring,
Management and Uncertainty ■ Transportation Scheduling and Planning ■ Natural Language Processing.

COST: Take advantage of the lower registration fee being offered to everyone who registers before January 28, 1991. Conference: $245
for members, $310 for non-members, $90 for students. Tutorial: $150 for members and students, $185 for non-members (price is per
tutorial). Rooms are available at the Fontainebleau Hotel at the special rate of $130, single and $145 double.

FOR ADDITIONAL INFORMATION: A complete advance program, including conference registration and hotel reservation forms,
can be obtained from the IEEE Computer Society, 1730 Massachusetts Ave., N.W., Washington DC 20036; (202) 371-1013.

1951-1991

IEEE COMPUTER loCIETY ❖ THE INSTITUTE OF ELECTRICAL
ANO ELECTRONICS I

BOOK REVIEWS
Editor; Guy Johnson, Department of Information Technology, Rochester Institute of Technology, 1 Lomb Memorial Drive, Rochester, NY 14623.

Modula-2 Programming: A First Course

Edward D. Harter (Prentice Hall, Englewood Cliffs, N.J., 1990, 519 pp., $36)

This is a conventional first-course
textbook in programming with Modula-
2. In addition to the features of the lan¬
guage, it discusses random number gen¬
eration, I/O, files, searching, sorting, and
dynamic data structures. Most of the
“systems programming” features of the
language are not discussed (such as co¬
routines and anchored variables). There
is a 10-page discussion of programming
standards, but no mention of program¬
ming style.

The Modula-2 language was invented
by Niklaus Wirth in 1978 as part of his
Lilith workstation project. One of the
self-imposed constraints of this project
was that all software be written in a sin¬
gle language. Since no existing language
was suitable, he invented a new one
based on Pascal and Modula. Modula-2
benefits from 10 years of experience
with Pascal and resembles that language
closely. However, the syntax has been
simplified somewhat, and some Pascal
features have been discarded. The major
addition to Pascal is the module, which
resembles the package in Ada and the
units found in many Pascal implementa¬
tions. A number of low-level capabilities
were added so that the operating system
software could be written in Modula-2.
These include the ability to address ab¬
solute memory locations and to receive
interrupts.

Modula-2 was released in 1980 and
has been very slowly supplanting its par¬
ent, Pascal. So far, Modula-2 has not
been standardized; the “bible” for Modu-
lans is Wirth’s book. Programming in
Modula-2 (4th edition, Springer-Verlag,
1988). A draft for a proposed interna¬
tional standard for Modula-2 was re¬
leased in late 1989. Harter’s book is not
tied to any particular Modula-2 imple¬
mentation and does a good job of warn¬
ing about possible incompatibilities with
the student’s system.

The production quality of the book is
only fair. The listings are dot matrix

printouts; these are very clear and read¬
able. However, there are a moderate
number of typos, such as “wisely used”
instead of “widely used.” The listings
on a couple of pages are scrambled. Sur¬
prisingly, there are a number of mis¬
prints in the program listings them¬
selves. There are also a few minor
factual errors, such as an incorrect defi¬
nition. On one page, the book claims that
variable parameters are always passed
by reference and value parameters are
always passed by value; in fact, this is
implementation-dependent. On another
page, the book recommends declaring
large array parameters as variables, even
if they should be value parameters, to
avoid the cost of copying them for the
call. However, most implementations
pass large structures by reference even if
they are value parameters.

The book has several weak points.
One is the absence of any graphics pro¬
grams, a surprise in this age of bit¬
mapped displays. (There are not even
any histograms printed with characters.)
The examples are oriented towards data
processing, and several times I thought I
had stumbled into a Cobol course. Stu¬
dents are fascinated by seeing the com¬
puter draw pictures, and I think it would
help the book to have a few such pro¬
grams. (A possible supplement is Rus¬
sell L. Schnapp’s Macintosh Graphics in
Modula-2 (Prentice Hall, 1986.)
Schnapp’s book uses mostly turtle
graphics, so it is not really Macintosh-
specific.)

Another weakness is a poorly integrat¬
ed presentation. Many topics are intro¬
duced and then never seen again; in par¬
ticular, Chapter 1 seems dissociated
from the rest of the book. As I was read¬
ing, I got the impression that the book
was written according to some curricu¬
lum guide or syllabus, and a lot of mis¬
cellaneous topics were crammed in
whether or not they fit naturally.

The book’s greatest weakness is its

examples. These are deliberately kept as
simple as possible. While this works well
in some ways, it teaches coding more
than programming. Students never have
to tackle anything very complicated,
since the examples do not increase in so¬
phistication as they work through the
book.

The strong point of this book is its
clear and extremely detailed explana¬
tions. Important notes and cautions are
set off in boxes. The descriptions of op¬
erations on data structures are especially
good; they have many pages of diagrams,
such as how linked lists tie together.

Despite the book’s weaknesses, I think
it is adequate for a first course. The in¬
structor must supplement it in various
ways; in particular, he or she should in¬
troduce some fairly complicated exam¬
ples that can be worked on for several
weeks so the students will gain a little
insight into large program development.
The ordering of the advanced topics is
sometimes peculiar, and the instructor
will probably want to alter this. For ex¬
ample, sorting precedes searching, and
hash searches are described before se¬
quential searches. Recursion has been
relegated to an appendix, while the body
of the book has implementations of
Quicksort and tree traversal using explic¬
it stacks. This throws away two excellent
opportunities to show the value of recur¬
sion, and nobody would implement these
algorithms with explicit stacks unless he
or she was writing in Fortran.

This book would not be suitable for in¬
dividual study. People who already know
programming would not want to wade
through it just to learn Modula-2. People
who don’t know programming could
learn the constructs of Modula-2, but
they would not learn how to attack a
programming problem and structure the
solution.

Allen Stenger
Gardena, California

December 1990 111

Great Ideas in Computer Science: A Gentle Introduction

Alan W. Biermann (The MIT Press, Cambridge, Mass., 1990, 446 pp., $27.95)

What are the great ideas in computer
science? What exactly do computer sci¬
entists do? And how do you introduce
technical concepts and activities into a
computer literacy course teaming with
liberal arts students? These are among
the questions Great Ideas in Computer
Science sets out to answer.

The first third of this book discusses
Pascal programming. After an initial
chapter of basic information on running a
first computer program, the book
progresses with detailed analyses of sam¬
ple Pascal programs. The reader is ex¬
pected, workbook style, to carry out the
book’s sample programs and exercises. It
would be difficult to follow the text
without actually sitting down at a com¬
puter and compiling the sample pro¬
grams. The reader is quickly challenged,
as increasingly more complex Pascal
constructs and programming techniques
follow.

Great Ideas in Computer Science
challenges its readers with Pascal pro¬
gramming’s most profound principles.
Following brief outlines of procedures
and functions, for example, the discus¬
sion focuses on every possible means of
passing values into these. Biermann even
uses an array as the value passing param¬
eter. Referencing values into procedures
and functions is an arduous learning pro¬
cess for liberal arts students and begin¬
ning programmers, and passing values
from an array can be especially perplex¬
ing. Biermann also discusses recursion in
some depth. This principle is often by¬
passed in freshman engineering-level
structured-programming courses because
of its inherent difficulty. In short, almost
no characteristic of Pascal programming
is overlooked in this book.

One of the best sections of this book is
“Electric Circuits.” This chapter skillful¬
ly explains how to configure simple bat¬

tery circuits to generate complex Boolean
logic functions. The discussion includes
relays, transistors, and electromagnets
and uses well-drawn diagrams and exam¬
ples to demonstrate how binary circuits
are created. This rudimentary computer
circuitry provides a natural transition into
microprocessor technology.

VLSI technology, the key to computer
architecture, is another self-contained
chapter. Mask layout, transistor sizing,
transistor delay circuitry, current gain,

Great Ideas in Computer
Science challenges its

readers with Pascal
programming’s most
profound principles.

symbolic layout, and circuit design com¬
puter simulation are some of the topics
covered in this section.

The chapter on machine architecture
examines the operation of the P88, part of
the Intel 8088 microprocessor. It focuses
on the interior workings of the P88 and
its assembly language. A prior explana¬
tion of assembly language might have
made the P88 more understandable to the
book’s intended readership. For example,
an introduction to basic computer organi¬
zation through the von Neumann machine
might have been gentler. This simple dia¬
gram could have enhanced the reader’s
understanding of the processor’s interac¬
tions with other computer units.

Chapters on language translation, pro¬

gram execution time, and parallel com¬
putation continue to illuminate difficult
concepts with intricate and well-written
explanations. An overview of connec-
tionist machines, probably the most enig¬
matic computers receiving contemporary
scrutiny, provides an interesting side¬
light. A section on problems not comput¬
able by computer and a final section on
artificial intelligence round out this chal¬
lenging book.

In summary. Great Ideas in Computer
Science is very readable and offers many
finely drawn diagrams and sketches. The
logical organization of its subject matter
provides good continuity with each idea
building on its predecessor. Every chap¬
ter has a bibliography listing major
books related to its theme. The thought¬
ful programming exercises provide inter¬
esting and challenging problems. The
subject matter selection succeeds in re¬
vealing what computer scientists do,
what their workaday lives are like, and
what general problems confront comput¬
er science today.

Yet, it is the very originality of this
book that contributes to its most signifi¬
cant problem. The complex topics are not
routinely found in introductory computer
literacy texts. Because of this book’s
depth and technical treatment, its intend¬
ed audience of liberal arts students will
not discover the gentle introduction sug¬
gested by the book’s subtitle. At the
same time, the challenging content of
Great Ideas in Computer Science makes
an interesting overview of the computer
science field sure to be welcomed by the
beginning technical or computer science
student. In this regard, the book offers a
real contribution.

Don Bissell
Harvest Lane Associates
Wells, Maine

Mind Children: The Future of Robot and Human Intelligence

Hans Moravec (Harvard University Press, Cambridge, Mass., 1988, 214 pp., paperback $8.95, hardcover $18.95)

In this extremely well written book,
the author provides a brilliant account of
the historical development of computers,
artificial intelligence, and robotics.

Industrial robots have undergone
many developments since the arrival of
the first Unimation machine in 1962.
Applications are widespread and grow¬
ing. The robot’s advantages of flexibili¬
ty, reprogrammability, tirelessness, and

hardiness have come to be appreciated by
industrialists. Even the layman realizes
that today’s industrial robot, unlike the
tin marvel of science fiction, has a real
and useful role to fulfill.

However, despite many developments
in the associated technologies, the indus¬
trial robot capable of sensing and react¬
ing to the external environment is still in
its infancy. Robots have been and contin¬

ue to be shaped in the image of man, and
the second generation is seen to be a fur¬
ther step in this direction. However, an¬
thropomorphism is a constraining influ¬
ence, and new perspectives are needed.
Perhaps we should endeavor to see be¬
yond the principles of replacing a human
by a human-like robot. It’s high time for
a new look at manufacturing processes
— particularly in assembly and product

12 COMPUTER

Strategies for Real-Time System Specification

Derek J. Hatley and Imtiaz A. Pribhai (Dorset House, New York, 1988,
386 pp., $51)

design for assembly. Flexible manufactur¬
ing systems (FMS) involving squat, mul¬
tiarmed robots with second-generation ca¬
pabilities, interacting with machine tools
under integrated computer control, offer
great potential. Furthermore, as robot ca¬
pabilities are enhanced to meet the chal¬
lenge of the more difficult industrial
tasks, applications outside the factory
will become more feasible, lending cre¬
dence to the present research on mobile
robots capable of operating in unstruc¬
tured environments, such as homes and
hospitals.

Robotics is a multidiscipline activity
involving mathematicians, physicists,
electrical engineers, mechanical engi¬
neers, and computer scientists. It is an
ideal subject for illustrating the systems
approach, and as such it offers a useful
means for broadening a learner’s perspec-

There are many instances where it is
necessary to use mobile robots. In flexi¬
ble machining systems, in addition to de¬
veloping flexible machines for assembly,
machining, etc., it is equally important
that there are flexible means of transpor¬
tation among the various production pro¬
cesses.

Fixed equipment, such as rollers, belts,
and overhead conveyors, is inflexible and
can be expensive to change if machine
layouts and transportation routes have to
be varied. In recognition of this, automat¬
ed guided vehicle systems have become
increasingly popular over the last 30
years. Such systems employ computer-
controlled skips or skips guided by em¬
bedded wires. But, greater flexibility can
be achieved if instead of restricting the
vehicle’s movement to a set of guide-
ways, it can be taught the route by an op¬
erator like any other robot.

In addition to FMS, there are many oth¬
er situations where mobile robots could
be quite useful; for example, the domestic
robot to help with housework; the night
watchman robot that can go right to the
heart of the fire; and the patient-care ro¬
bot that can relieve the nurse of hard
physical labor such as lifting, holding,
and carrying patients or handicapped
children.

Mind Children is full of ideas and in¬
formation, and it is extremely easy to
read. The book, which consists of six
chapters and three appendices, could be
used as required reading for students in
engineering and computer science at the
introductory level. Also, this book is use¬
ful for anyone who wishes to keep abreast
of recent technological developments in
robotics and artificial intelligence.

Sheo G. Misra
Wilkes University
Wilkes Barre, PA

This book — which is somewhat
broader than its title suggests — de¬
scribes a methodology for expressing re¬
quirements for software-based systems
and expressing the structure of these
systems. It combines recipes describing
what is to be solved with how to solve
it. It goes far beyond requirements spec¬
ification and says how to design sys¬
tems. Going deeply into the design pro-

This book goes far

beyond requirements
specification and says

how to design systems.

cess, it says not only what is to be struc¬
tured but also how it is to be done. Since
there is nothing wrong with such an ap¬
proach, I would only warn that this un¬
derstanding of the development process
is a little bit different from more com¬
mon IEEE-endorsed terminology (see
IEEE Std. 1074, Software Life-Cycle
Processes, for example, where require¬
ments documents are called specifica¬
tions, and design documents are called
descriptions).

The preface says that this book is “for
a wide range of audience.” I would be
more specific and add that it is for ev¬
eryone who wants to learn the methods
presented, including system specifiers,
designers, software engineers, system
engineers, analysts, maintainers, and
project managers.

What will they gain from reading this
book? It presents two detailed, fairly co¬
hesive methods for specifying systems
(Parts II and III, “The Requirements
Model” and “Building the Requirements
Model”) and for designing them (Parts
IV and V, “The Architecture Model”
and “Building the Architecture Model”).
The methods largely follow two older
approaches to structured design, present¬
ed in widely recognized books, authored
by E. Yourdon and L.L. Constantine
(Structured Design, Prentice Hall, 1975)
and by Tom De Marco (Structured Anal¬
ysis and System Specification, Prentice
Hall, 1978). In particular, the book is a

good continuation of the structured analy¬
sis and design methods of De Marco, who
also wrote a foreword to the present book.

What is the essence of these methods?
In the first area, building the requirements
model, the book includes the develop¬
ment of data context and control context
diagrams, data flow and control flow dia¬
grams, process and control specifications,
timing specifications, and a requirements
dictionary. The second area includes the
development of the following for building
the architectural model: context diagrams,
flow and interconnect diagrams, module
and interconnect specifications, and a dic¬
tionary. The rest is left to the implemen¬
tors.

As the title implies, the book covers
strategies, that is, methods rather than
techniques. Although the methods and
their presentation are rigorous and sys¬
tematic, they are not formal. The only
theoretical base is finite state machines.
Certainly, the methods could be made
more formal, thus leading to the develop¬
ment of certain techniques, for example,
how to combine the data flow and control
flow diagrams. As a direct consequence,
the book does not cover tools, even
though the authors suggest that the meth¬
odology can be viewed as a tool kit,
which it cannot. However, tools for these
strategies are being extensively developed
by commercial companies, and references
are included in the bibliography.

It is not my intention to assess the
methods themselves or make direct rec¬
ommendations about their use. I assess
the book’s treatment of the methods, and
in that regard, it is excellent. It describes
these strategies more than adequately;
moreover, it does so in a structured and
clear way.

What about the book’s relation to real¬
time issues? It is hard to clearly answer
this question and assess the book in this
respect without applying the strategies.
Definitely, the book addresses the prob¬
lem. Real-time requirements are covered
by timing specification, at least. Is the
treatment of real-time aspects intrinsic to
the method, or are real-time related prop¬
erties only added to normal conventional
requirements? Certainly, this is related to
the question, does this method find what
is real-time specific? Without using this
methodology, I cannot easily determine if
the strategies presented capture the intri¬
cacies of real-time systems. Discussions
in the book about timing properties of
systems, although extremely interesting,
did not convince me that the methods

December 1990 113

own something special related to real
time. The facts are more obvious and en¬
couraging, however. The methods proved
extremely useful in designing a real-time
embedded avionics system. They are in
widespread use in other industries as
well. This is confirmed by three case
studies that end the book.

In similar publications, authors often
try to make a title wider than contents,

hoping to attract a broader audience.
Here, on the contrary, the book’s content
is wider than its title. The book is not
limited to the specification of require¬
ments, because the authors’ understand¬
ing of this term includes the specification
of the design. Furthermore, it is not nec¬
essarily confined to real-time systems, as
the methods may deal with a wide range
of other applications as well. Although

the book is somewhat limited, since it
presents only one view and one solution
of the problem (this is its real strength,
on the other hand), I would recommend
it for college use as a complementary
textbook on design in software engineer¬
ing and real-time systems courses.

Janusz Zalewski
Southwest Texas State University

contents CS MAGAZINES

November 1990 IEEE Software November 1990 IEEE Computer Graphics
and Applications

The Challenge of Software Development
Ted. G. Lewis and Paul Oman
Can anything be done to accelerate the advancement of software-devel¬
opment technology in the 1990s? This issue includes reports from 12
software experts on key challenges facing the industry.

Prospects for an Engineering Discipline of Software
Mary Shaw
Software engineering is not yet a true engineering discipline, but it has
the potential to become one. Older engineering fields suggest the char¬
acter software engineering might have.

Planning the Software Industrial Revolution
Brad J. Cox
Software must stop being a process-centered cottage industry. A prod¬
uct-centered approach that gives equal weight to specification can
move software engineering into its industrial revolution.

Software-Reliability Engineering: Technology for the 1990s
John D. Musa and William W. Everett
Software engineering is about to enter a new stage — the reliability
stage — that stresses customers’ operational needs. Software-reliabili¬
ty engineering will make this stage possible.

Engineering Software under Statistical Quality Control
Richard H. Cobb and Harlan D. Mills
The costs of continuing to develop failure-laden software with its asso¬
ciated low productivity are unacceptable. Cleanroom engineering
promises lower costs and improved quality.

The Challenge of Building Process-Control Software
Nancy G. Leveson
Process-control software has unique and unsolved challenges for the
software engineer. Serious losses could result from our failure to meet
these challenges.

Iconic Programming: Where to Go?
Tadao Ichikawa and Masahito Hirakawa
Iconic languages can offer much to developers if used with, not as a re¬
placement for, traditional textual languages. Past research points to
how this may happen.

Joint Software Research between Industry and Academia
Carl K. Chang and George B. Trubow
This model for industry-sponsored academic research helps the spon¬
sor gain tangible results quickly but respects the university‘s research
mission.

Making a Difference in the Schools
Tom DeMarco
Diverting corporate resources to the schools may look like folly in the
short run. But in the long run, it looks like a strategy for survival.

A Survey of Shadow Algorithms
Andrew Woo, Pierre Poulin, and Alain Fournier

Adaptive Polygonalization of Implicitly Defined Surfaces
Mark Hall and Joe Warren

Ray Tracing with Polarization Parameters
Lawrence B. Wolff and David J. Kurlander

A Realistic Lighting Model for Computer Animators
Paul S. Strauss

A Critical Evaluation of PEX
Hsien Ching Kelvin Sung, Greg Rogers, and William Kubitz

Set Models and Boolean Operations for Solids and Assemblies
Farhad Arbab

For subscription information, circle number 200 on the reader
service card.

COMPUTER

CAREER OPPORTUNITIES
RATES: $12.00 per line, (ten lines mini¬
mum). Average five typeset words per
line, eight lines per column inch. Add
$10 for box number. Send copy at least
one month prior to publication date to:
Marian B. Tibayan, Classified Adver¬
tising, COMPUTER Magazine, 10662
Los Vaqueros Circle, PO Box 3014, Los
Alamitos, CA 90720-1264; (714) 821-
8380; fax:(714) 821-4010.

In order to conform to the Age Discrimina¬
tion in Employment Act and to discourage
age discrimination, COMPUTER may reject
any advertisement containing any of these
phrases or similar ones: "...recent college
grads...," "...1-4 years maximum experi¬
ence...," "...up to 5 years experience," or
"...10 years maximum experience." COM¬
PUTER reserves the right to append to any
advertisement without specific notice to the
advertiser. Experience ranges are suggested
minimum requirements, not maximums.
COMPUTER assumes that since advertisers
have been notified of this policy in advance,
they agree that any experience require¬
ments, whether stated as ranges or
otherwise, will be construed by the reader
as minimum requirements only.

UNIVERSITY OF SOUTH FLORIDA
Chairperson

Department of Computer Science
and Engineering

The Department of Computer Science
and Engineering at the University of South
Florida invites nominations and applications
for the position of Chairperson. The Depart¬
ment offers Bachelor’s degrees in Computer
Science (accredited by CSAB) and in Com¬
puter Engineering (accredited by ABET),
Master’s and Ph D. degree programs. The
current faculty size is 15, with several new
positions to be added over the next two
years. The four broad areas of research em¬
phasis chosen by the faculty are

• Computer Architecture/VLSI Design &
Test.

• Computer Vision/Graphics/Image
Processing,

• Artificial Intelligence/Expert Systems,

• Software Engineering.
The Department is relatively young and

ambitious, with a rapidly expanding research
program. An experienced individual is
sought as Chairperson to lead the Depart¬
ment to a position of national/international
recognition.

The Department shares a new 12 million
dollar building with the Department of Elec¬
trical Engineering. The Department research
network includes a substantial number of
SUNs and VAXes, an INTEL 2/386 hyper¬
cube, a variety of specialized graphics and
image processing equipment, and a number
of other resources. Additional computing re¬
sources are available on the College com¬

puting network and the University network.
The University of South Florida is the sec¬

ond largest university in the State of Florida,
and the forty-second largest in the nation,
with an enrollment of well over 30,000. USF
occupies a 1,700-acre campus in the city of
Tampa, one of the largest and fastest grow¬
ing metropolitan areas in Florida, offering a
wide variety of cultural, entertainment,
sports and outdoor activities. The quality of
life is excellent and the cost of living is
moderate. The area near the University is
experiencing dramatic growth in high-tech¬
nology industry and medical facilities. The
faculty of the Department have interactions
with a number of companies in the area, in¬
cluding AT&T, E-Systems, GTE Data Ser¬
vices, Harris, Hercules, Honeywell and IBM.
A PBS public-TV channel is located on cam¬
pus ; other television links tie the University to
industry and remote campuses.

Applicants should send a resume and the
names of three references to the Department
Chairperson Search Committee, Depart¬
ment of Computer Science and Engineer¬
ing, University of South Florida, Tampa, FL
33620.

The University of South Florida is an equal
opportunity and affirmative action employer.

International Computer
Science Institute

Berkeley, California
Postdoctoral and Visiting Positions

The International Computer Science In¬
stitute announces the availability of postdoc¬
toral and visiting appointments for 1991 and
beyond. The Institute is a non-profit basic
research organization physically near and
loosely affiliated with the University of Cali¬
fornia at Berkeley. Postdocs will work with
the Institute and UCB faculty and staff on
current projects. More senior visiting re¬
searchers can propose projects of any length
and character. ICSI conducts research in
several areas of parallel and distributed com¬
putation including theory, realization and
applications of massive parallelism and the
design of multimedia distributed systems and
very high-speed networks.

Applicants should submit a resume, the
names and addresses of three references,
selected publications and a one-page re¬
search plan as soon as possible to:

Jerome A. Feldman, Director
International Computer Science Institute
1947 Center Street, Suite 600
Berkeley, CA 94704-1105 U.S.A.
FAX (415) 643-7684
Internet/CSnet:info@icsi.berkeley.EDU
In order to save time, applicants should

ask their references to write directly to the
above address so that letters of evaluation
reach ICSI at about the same time as the
other application materials. Selection will be
based on overall qualifications and compati¬
bility with ICSI research plans. Applications
from citizens of ICSI sponsor nations are
especially welcome.

ICSI is an Equal Opportunity Employer.

UNIVERSITY OF CALIFORNIA,
SANTA BARBARA

Department of Computer Science

The Department of Computer Science at
the University of California at Santa Barbara
invites applications for junior and senior
tenure-track faculty positions. Senior appli¬
cants should possess distinguished research
records and the ability to attract research
funding, while junior candidates must demon¬
strate exceptional promise.

Applicants will be considered in all areas of
Computer Science, although the depart¬
ment is currently attempting to achieve
strengths in the areas of software systems,
computer systems modeling and analysis,
algorithms and complexity, parallel and dis¬
tributed computing, scientific computation,
and machine intelligence. Resources, tailored
to the needs of successful applicants, will be
available for state-of-the-art laboratories for
research and instruction. Responsibilities in¬
clude a strong emphasis on research, super¬
vision of graduate students, teaching gradu¬
ate and undergraduate courses, participation
in departmental and university committees.

All applicants should hold a doctoral
degree in Computer Science or a related
field. Appointments are scheduled to begin
in 1991-92. Unfilled positions will remain
open until filled. Send resume and names of
at least 4 referees to:

Recruitment Committee
Department of Computer Science
University of California
Santa Barbara, CA 93106
Proof of U.S. citizenship or eligibility for

U.S. employment will be required prior to
employment (Immigration Reform & Con¬
trol Act of 1986). The University of Califor¬
nia is an Equal Opportunity/Affirmative Ac¬
tion Employer.

ASTEM, KYOTO, JAPAN
Advanced Software and Mechatronics

Research Institute

The newly established ASTEM. Kyoto,
Japan, invites applications for research
associate and senior research positions.

Speciality areas include, but are not
limited to, Software Engineering, Knowl¬
edge Base, Computer Graphics, and CAD/
CAM/CIM. For a research associate posi¬
tion, a candidate should be highly qualified
and hold an MS in CS, EE, or related fields;
for a senior research position a PhD is nor¬
mally required.

ASTEM provides an excellent environ¬
ment for research in Software Engineering
and AI with unique Japanese software and
the state of the art workstations.

ASTEM is located in Kyoto, the ancient
beautiful city of Japan.

Send resume to: Mr. A. Kamei,
ASTEM, Kyoto Research Park, 17

Chudoji, Minami-machi, Shimogyo, Kyoto
600 JAPAN
or call (213) 544-1103.

December 1990 115

UNIVERSITY OF PITTSBURGH
Department of Computer Science

The Department of Computer Science in¬
vites applications for one or more tenure-
track faculty positions at the assistant pro¬
fessor level areas of interest are Systems,
Data Base, and Artificial Intelligence. The
starting date will be September 1, 1991.
Responsibilities include research, supervi¬
sion of graduate student research (Ph.D.and
M.S.), and graduate and undergraduate
teaching. Candidates should have a Ph.D. in
computer science and a strong interest in
both research and teaching.

The Department currently has twenty-
three full-time faculty members and supports
strong graduate and undergraduate pro¬
grams. Departmental resources include an
excellent research library and extensive com¬
puting facilities including a network of SUN
and Xerox 1100-series (Dandelion) worksta¬
tions, a VAX 11/780 (under BSD UNIX),
an Intel iPSC/2 hypercube, a variety of
micro-computers, and several graphics sys¬
tems. The research systems are accessible
via the Department’s Ethernet-compatible
LAN. Convenient access is also provided to
the extensive general computer facilities of
the University as well as to other networks
(e.g., ARPANET, CSNET). The Depart¬
ment operates the Center for Parallel,
Distributed and Intelligent Systems (CPDIS)
to provide an environment for innovative
research in computer science. Since the Uni¬
versity of Pittsburgh is a founding member of
the Pittsburgh Supercomputing Center and
an affiliate member of the Software Engi¬
neering Institute, the Department of Com¬
puter Science has access to the Cray
X-MP/48 of PSC and the software engi¬
neering expertise at SEI.

Please send your resume to: Dr. Rami
Melhem, Chair of Faculty Search, Depart¬
ment of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15260.

Pitt is an equal opportunity/affirmative ac¬
tion employer and especially encourages
women and members of ethnic minorities to
apply.

UNIVERSITY OF CONNECTICUT
ASSISTANT PROFESSOR
COMPUTER SCIENCE &

ENGINEERING

The Department of Computer Science
and Engineering at the University of Con¬
necticut is seeking an outstanding applicant
with a demonstrated research ability to fill
one anticipated tenure-track faculty position
at the Assistant Professor level beginning
with 1991-1992 academic year. The Univer¬
sity is located in a rural area in Northeast
Connecticut within easy driving distance of
several major metropolitan areas. The de¬
partment offers B.S.E., M.S., and Ph.D.
degrees in Computer Science within the
School of Engineering. Applicants with
Ph.D. in Computer Science, Computer Engi¬
neering or equivalent areas are invited to
submit resumes and three letters of reference
to: Chair, Search Committee, University of
Connecticut, Computer Science and Engi¬
neering Department, U-155, 260 Glenbrook
Road, Storrs, CT 06269-3155. AA/EOE.
(Search #1A115).

116

UNIVERSITY OF CALIFORNIA
AT IRVINE

Faculty Positions in
Computer Science

The Department of Information and
Computer Science (ICS) is actively recruiting
faculty AT ALL LEVELS. We have dynamic
research groups in the areas of computer
systems design, parallel processing, artificial
intelligence, computer networks and distri¬
buted processing, software, social and man¬
agerial analysis of computing, and theory.
We are continuing to build on these areas of
strength. We are also interested in develop¬
ing new strength in computational biology,
integrated systems, computer-supported co¬
operative work, databases, design tools, and
model-based reasoning. We will sympatheti¬
cally review applications from very strong
candidates in all areas of computer science.

We are looking for new faculty with strong
research records who would thrive in a high¬
ly productive but friendly setting, and who
would like to join us in exploring the nature
of computing, broadly defined. We specially
encourage application from exceptionally
distinguished candidates for senior positions.

The ICS Department is an independent
academic unit reporting to the Executive
Vice Chancellor. ICS faculty emphasize core
computer science as well as research in
emerging areas of the discipline, with effec¬
tive interdisciplinary ties to colleagues in
neurobiology, cognitive science, manage¬
ment, engineering, and the social sciences.
The department currently has 30 full-time
faculty positions and over 120 Ph.D. stu¬
dents, with major support from the admini¬
stration to expand and to strengthen the re¬
search environment.

Annual research funding from contracts
and grants from agencies such as DARPA,
NSF, and ONR, currently total over $6.5
million. In 1986 the software group was
awarded a Coordinated Experimental Re¬
search (CER) grant from the National Sci¬
ence Foundation. This support has fostered
the creation of a Research Laboratory for
software engineering, in which major studies
of the development and evaluation of soft¬
ware technology are undertaken. High
quality research has also fostered the crea¬
tion of a Research Laboratory for computer
systems design that deals with methodolo¬
gies and tools for the design of complex com¬
putational systems. A third Research Labor¬
atory, in Artificial Intelligence, is planned.

Department equipment includes approxi¬
mately 175 workstations, primarily Sun-3’s
and Sun-4s. Two large multiprocessor Se-
quents and a Hypercube are available, as
well as approximately 300 Macintosh Plus’s
and II’s. All our major workstations and com¬
puters are tied together with networks, which
are gatewayed to the campus network, and
from there, to regional, national, and inter¬
national networks (Darpa Internet, CSnet,
Bitnet, etc.). In addition, department mem¬
bers have access to campus-wide computing
resources as well as regional supercomputer

UC-Irvine is located in Orange County,
three miles from the Pacific Ocean near
Newport Beach, and approximately halfway
between Los Angeles and San Diego. The
campus is situated in the heart of a national
center of high-technology enterprise. It is

growing rapidly and offers exciting profes¬
sional and cultural opportunities. Salaries
and benefits are competitive. Special hous¬
ing assistance is available from the university,
including newly built, for-sale housing within
short walking distance from the Department.

Send resumes and names of four refer¬
ences to:

Chair, Faculty Recruiting Committee
Department of Information and Computer

University of California-Irvine
Irvine, CA 92717

The ICS Department has several vacant
positions and application screening will begin
immediately upon receipt of curriculum
vitae. Maximum consideration will be given
to applications received by January 31,
1991.

The University of California is an Affirma¬
tive Action/Equal Opportunity Employer.
The Department of ICS is particularly in¬
terested in receiving applications from
women and minority candidates.

THE UNIVERSITY OF AUCKLAND
NEW ZEALAND

Two Chairs in Computer Science

The University of Auckland seeks to ap¬
point two qualified Computer Scientists who
have research and teaching skills that will
enable them to make significant contribu¬
tions to its rapidly developing Department of
Computer Science.

The University, with over 16,000 stu¬
dents, holds a premier position and is sited in
the heart of New Zealand’s largest city.
Auckland, City of Sails, is the international
gateway to New Zealand, the major in¬
dustrial, commercial and cultural city in the
country, and offers an exceptional range of
lifestyles and recreational activities.

Our Department of Computer Science,
now ten years old, has 370 equivalent full¬
time students. In the past the department has
led the way with the use of modern comput¬
ing technology in teaching. Now it is poised
on the brink of a second period of develop¬
ment following a recent review of the posi¬
tion of computing disciplines within the
university. The new chairs will provide
leadership for this new development and the
associated expansion of the department’s
resources.

Applications are welcomed from those
who believe they are qualified for these
challenging positions. The successful ap¬
plicants will be expected to have advanced
qualifications, accomplished research re¬
cords and a demonstrated history of teach¬
ing, administration and liaison with industry
and commerce. The new chairs will be en¬
couraged to foster relations with the business
sector, including engagement in consultancy
activities.

The precise conditions of appointment are
subject to negotiation. Further information
including standard Conditions of Appoint¬
ment and Method of Application are avail¬
able from the Assistant Registrar (Academic
Appointments), University of Auckland, Pri¬
vate Bag, Auckland, FAX 64 (9) 799 317.
Applications should be forwarded by the
closing date 31 JANUARY 1991.

The University of Auckland
An Equal Opportunity Employer

COMPUTER

UTAH STATE UNIVERSITY WASHINGTON STATE UNIVERSITY

The Department of Computer Science
has recently merged with the Department of
Electrical Engineering, and we seek to
strengthen our capabilities in selected areas
of Computer Science. Applications are in¬
vited for full-time tenure-track positions at
Assistant Professor, Associate Professor and
Full Professor levels. Responsibilities include
undergraduate and graduate teaching and
the initiation, conduct and supervision of
research. Minimum qualifications include a
Ph.D. degree in Computer Science or close¬
ly allied field and a demonstrated potential
for research. Candidates for the higher ranks
must have proven records of accomplish¬
ment as evidenced by publications and spon¬
sored research. Areas of primary interest are
artificial intelligence, database systems, soft¬
ware engineering and parallel and distrib¬
uted computing. Screening will begin im¬
mediately and continue until all openings are
filled. Positions are available starting January
1, 1991 and August 16, 1991.

To apply, send a resume and the names
and addresses of at least three references to:
Dr. Yacov Shamash, Chairman, Depart¬
ment of Electrical Engineering and Com¬
puter Science, Washington State University,
Pullman, WA 99164-2752. WSU is an EA/
AA educator and employer. Protected
group members are encouraged to apply.

COLGATE UNIVERSITY
Hamilton, New York 13346

Department of Computer Science
(315) 824-1000, ext. 719

We invite applications for two anticipated
positions, pending administrative approval:
one a tenure track position at the rank of
assistant professor; the other a one-year
leave-replacement position. Candidates
should have or be near completion of a
Ph.D. in computer science. Strong candi¬
dates in any subfield of the discipline will be
considered.

Colgate is a quality liberal arts college with
a first-rate computer science program. The
department has five faculty with the follow¬
ing research interests: theory of computation
and programming language semantics, com¬
putational complexity and algorithms, tem¬
poral reasoning in natural language process¬
ing, graphics and chaos, and discrete event
simulation on parallel computers. The Com¬
puter Science Department has an introduc¬
tory lab equipped with sixteen PCs, and an
upper-level/research lab with the following
equipment: a network of seven NeXT work¬
stations, a VAX 750 running BSD 4.3 Unix,
four 17-node transputer-based parallel com¬
puters, and PC/AT or NeXT workstations in
every faculty office. The faculty offices and
laboratory machines are connected on an
ethernet. We are members of both CSNet
and BitNet.

Applicants should send a resume and the
names of three references to: Chris Nevison,
Chairman, Department of Computer Sci¬
ence, Colgate University, Hamilton, NY
13346. We will consider all applications
received by January 1, 1991, and applica¬
tions received thereafter until the positions
are filled. EO/AAE.

COLUMBIA UNIVERSITY
Department of Computer Science

We are looking for several exceptional peo¬
ple to join our faculty. Tenure-track positions
are available at all ranks in all areas. Applicants
in hardware are particularly encouraged.

Our department of nineteen tenure-track
and three teaching faculty emphasizes re¬
search, and attracts excellent Ph.D. stu¬
dents, virtually all of whom are fully sup¬
ported. Departmental facilities include many
advanced workstations, high-performance
servers, and graphic systems, plus state-of-
the-art systems designed and built at Colum¬
bia for vision, robotics, parallel computation,
networking and distributed computing. We
are within an hour’s drive of the research
laboratories of IBM, AT&T, Bellcore, Sie¬
mens, Philips, NYNEX, and other leading
industrial companies.

Columbia University is one of the oldest
and most prestigious universities in the
United States, and New York City is one of
the cultural, financial, and communications
capitals of the world. The department is
housed in its own building, and in 1992 we
will acquire additional space and facilities in
the interdisciplinary Center for Engineering
and Physical Science Research now under
construction. University-subsidized housing
and parking is readily available.

Candidates for assistant professor should
exhibit exceptional research promise, while
those seeking a more senior position should
have an outstanding record of research
achievement. Interest and ability in teaching
undergraduates and graduates is necessary.
Send resume and the names of at least three
references to: Prof. John R. Render, Faculty
Search Chairperson, Department of Com¬
puter Science, Columbia University, New
York, New York 10027.

Columbia University is an Equal Oppor¬
tunity/Affirmative Action Employer. We
encourage applications from women and
minorities.

COMPUTER SPECIALIST

Plans, organizes, directs and coordinates
data processing services for State Vocational-
Technical Schools and other State Schools
in region. Performs systems analysis and
programming utilizing VAX/VMS and data¬
base administration utilizing ORACLE rela¬
tional database system. Trains and super¬
vises technical and non-technical personnel.
Confers with school directors and other ad¬
ministrative personnel concerning data pro¬
cessing needs and utilization of computer
resources. Selects, customizes and maintains
software utilized for instructional and ad¬
ministrative functions.

Requirements: B.S. or higher Degree in
Computer Science and two years experi¬
ence as Computer Systems Programmer
utilizing VAX, VMS. DOS and ORACLE
database.

$27,069.00 per year; 7:30 a.m. - 4:00
p, m.: 40 hours per week.

Must have proof of legal authority to work
in the United States.

Contact Louisiana Office of Employment
Security, 2900 Dowdell St.. Shreveport, LA
71133 Job Order *8.33452.

Applications are invited for all faculty
levels in Computer Science. Qualifications
include a doctorate in Computer Science or
a closely related field; a strong commitment
to teaching at both the undergraduate and
graduate levels; and a similar commitment to
research. Specializations of particular interest
include Parallelism, Software Engineering,
and Artificial Intelligence.

The department currently offers B.S. and
M.S. degrees in Computer Science. Suc¬
cessful candidates would be expected to
assist in the development of a Ph.D.

The university is located in a beautiful
mountain valley with easy access to recrea¬
tional and cultural activities.

Send resumes and names of 3 references
to: Gregory Jones, Computer Science, Utah
State University, Logan, Utah, 84322-
4205. Positions will open January and re¬
main open until filled. U.S.U. is an EO/AAE
employer.

UNIVERSITY OF WASHINGTON
Department of Computer Science

and Engineering

The Department of Computer Science
and Engineering at the University of
Washington expects to have one or more
tenure-track openings starting in the
1991-92 academic year. We seek outstand¬
ing applicants who add to our existing
research strengths, particularly in program¬
ming languages, compilers, graphics, hard¬
ware/computer engineering, and software
engineering, or who bring significant new
research strength to our department.

A moderate teaching load allows time for
quality research and close involvement with
students. We expect applicants to have a
strong commitment to both research and
teaching, and an outstanding record of
research for their level.

The department may also have visiting
positions that would require both teaching
and research. It may be possible to hold
these for portions of the 1991-92 academic

Interested applicants should send a letter
of application, a resume, and the names of
four references to Faculty Recruiting Com¬
mittee, Department of Computer Science
and Engineering FR-35, University of Wash¬
ington, Seattle, Washington 98195. Candi¬
dates are encouraged to apply as early as
possible.

The University of Washington is an Affir¬
mative Action/Equal Opportunity Employer.
The Ph.D. is required for these positions.

INDIAN INSTITUTE OF
TECHNOLOGY, KANPUR

Faculty positions in all areas of Computer
Science are available. Special requirements:
Computer Architecture and Systems. Send
resume and names of three referees to the
Head, Department of Computer Science &
Engineering, Indian Institute of Technology,
Kanpur—208 016 (India).

To expedite, request your referees to send
recommendation letter to us at an early date.

December 1990 117

STATE UNIVERSITY OF NEW YORK
AT BINGHAMTON

Department of Computer Science
The Watson School of Engineering

The State University of New York at Bing¬
hamton invites applications for tenure-track
positions in the Department of Computer
Science beginning August 1991. Positions
are available at junior and senior levels and
the salary is competitive. Preferred areas of
specialization include distributed/parallel
systems, databases, software engineering,
and artificial intelligence, but applicants in
all areas of Computer Science will be con¬
sidered. Applicants must have a Ph.D. in
Computer Science or a related area, and
possess a strong commitment to research
and teaching.

The Department has established Ph.D.
and M.S. programs, and an accredited B.S.
program. High technology computer-
oriented companies in the local area such as
IBM, G.E., Link Flight Simulation, and Uni¬
versal Instruments provide opportunities for
industrial collaboration.

Send nominations or applications includ¬
ing a resume and the name of three refer¬
ences to Professor Sudhir Aggarwal, Chair¬
man, Department of Computer Science,
The Watson School, State University of New
York at Binghamton, P.O. Box 6000, Bing¬
hamton, New York 13902-6000. Applica¬
tions received by January 15, 1991 will
receive first consideration.

The State University of New York at Bing¬
hamton is strongly committed to affirmative
action. We offer access to services and re¬
cruit students and employees without regard
to race, color, sex, religion, age, disability,
marital status, sexual orientation or national

OREGON GRADUATE INSTITUTE
OF SCIENCE AND TECHNOLOGY

Would you like to work in an academic
environment with an active graduate educa¬
tion program, but with no undergraduate
teaching responsibilities? A place that en¬
courages serious research by providing strong
administrative support and excellent facilities?
If so, consider joining the growing faculty of
the Oregon Graduate Institute's Department
of Computer Science and Engineering.

We seek both senior and junior faculty col¬
leagues with experience in graduate educa¬
tion and ambitious research goals. Technical
areas of particular interest include: scientific
and engineering databases, distributed and
concurrent computing systems, software
specification and derivation, artificial neural
networks and speech recognition.

OGI is located in Portland, one of the
most affordable of the West Coast’s beautiful
cities. Portland’s relaxed life style offers a set¬
ting in which both your family and your re¬
search can thrive.

For more information about OGI, please
address inquiries to: Professor Richard B.
Kieburtz, Chairman, Department of Com¬
puter Science and Engineering, Oregon
Graduate Institute, 19600 NW von Neu¬
mann Drive, Beaverton, OR 97006, (503)
690-1150, csedept@cse.ogi.edu.

OGI is an Equal Opportunity Employer.

UNIVERSITY OF PENNSYLVANIA

The University of Pennsylvania invites ap¬
plications for faculty positions in the Depart¬
ment of Computer and Information Science,
effective July 1, 1991. Outstanding candi¬
dates in the areas of computer graphics,
scientific visualization, artificial intelligence,
computer vision and programming languages
will be given priority.

Applications (including the names of at
least three references) should be submitted
to Professor Bonnie Lynn Webber, Chair-
Faculty Search Committee, Department of
Computer and Information Science, Univer¬
sity of Pennsylvania, Philadelphia, PA
19104-6389.

(The University of Pennsylvania is an
Affirmative Action/Equal Opportunity
Employer).

CLEMSON UNIVERSITY
Head, Department of Computer Science

Clemson University invites nominations
and applications for the position of Head,
Department of Computer Science. The suc¬
cessful applicant is expected to have an
earned Ph.D. in Computer Science or close¬
ly related field, and a record of excellence in
research and in teaching at both the under¬
graduate and graduate level. Experience in
departmental or university administration is
highly desirable.

The Department of Computer Science,
part of the College of Sciences, offers a
CSAC/CSAB accredited BS program in
computer science, a BS program in com¬
puter information systems, and established
MS and Ph.D. programs in computer science.
A full-time faculty of 22 supports approx¬
imately 300 undergraduate students, 75 MS
students and 25 Ph.D. students. Computing
facilities are provided by both the university
and the department with excellent access to
all systems through workstations in faculty
offices, public access clusters and dedicated
laboratory machines for specialized courses.

Clemson University, a land grant institu¬
tion with 16,000 students, is located in the
northwest corner of South Carolina, in the
foothills of the Blue Ridge Mountains. Its
20,000 acre campus is adjacent to Lake
Hartwell, which forms a boundary between
South Carolina and Georgia. Approximately
two hours on interstate highways from
Atlanta, GA and Charlotte, NC, the Univer¬
sity is located in the town of Clemson, SC,
a small city with a population of 10,000.
Quality of life, with outstanding opportuni¬
ties for outdoor activities, is excellent while
the cost-of-living is well below most areas of
the country.

Qualified applicants should submit a
resume with names and addresses of at least
three references to:

Dr. John C. Peck, Chair
Departmental Search Committee
Department of Computer Science, Slot A
Clemson University
Clemson, SC 29634-1906
EMAIL: Peck@CS.Clemson.Edu
Selection of candidates for interviews will

begin in February 1991. Clemson University
is an Equal opportunity/Affirmative Action
Employer. Women and minorities are en¬
couraged to apply.

STATE UNIVERSITY OF
NEW YORK AT BUFFALO

Department of Computer Science
Faculty Positions

The Department of Computer Science is
seeking candidates for faculty positions at
junior or senior levels. Junior-level appli¬
cants must show excellent research promise,
and must have completed all requirements
for the Ph.D. degree in computer science or
a closely related field before assuming duties.
Candidates for senior positions must have an
established research reputation.

The Department currently has 15 tenure-
track faculty, 9 additional faculty, and 140
graduate students. Primary research areas
include: artificial intelligence, complexity
theory, computer vision, numerical linear
algebra, parallel algorithms, programming
languages, systems and VLSI. Department
members are actively engaged in interdisci¬
plinary research programs in the Advanced
Scientific Computing Graduate Group, the
Cognitive Science Center, the Vision Gradu¬
ate Group, and the NSF National Center for
Geographic Information and Analysis. De¬
partmental computing facilities include a net¬
work of workstations, hypercubes, Symbolics,
an Encore Multimax and several image pro¬
cessing/graphics systems. The department
is expanding, with additional faculty lines
committed annually. Salaries are competitive.

Applications should include a letter and a
curriculum vitae. Applicants should arrange
to have four letters of reference sent directly
from their referees to: Dr. Deborah Walters,
Chair of Search Committee, Department of
Computer Science, 226 Bell Hall, SUNY at
Buffalo, Buffalo, NY 14260. For full con¬
sideration applications should be received by
January 20, 1991.

SUNY is an Equal Opportunity/Affirma-
tive Action employer.

THE UNIVERSITY OF TEXAS
AT ARLINGTON

The Department of Computer Science
Engineering at The University of Texas at Ar¬
lington invites applications for tenure-track
or visiting faculty positions in all areas of
computer science or computer engineering.
Applicants with expertise relating to reliable
real-time distributed systems, telecommuni¬
cations software, object-oriented systems,
scientific visualization, knowledge-based
systems, or parallel processing will be given
preference, Rank is open. An earned doc¬
torate or equivalent and a commitment to
teaching and scholarly research are re¬
quired. Openings are expected for January
and September 1991. Applications received
prior to October 15, 1990 and March 1,
1991 will receive full consideration for
January and September openings, respec¬
tively. Interested persons should send a
resume and a list of references to Bill D.
Carroll, Professor and Chairperson, Com¬
puter Science Engineering Department,
P.O. Box 19015, The University of Texas at
Arlington, Arlington, TX 76019. Phone:
817-273-3785. FAX 817-273-2548, Inter¬
net: carroll @evax. arl. utexas. edu.

The University of Texas at Arlington is an
Equal Opportunity Affirmative Action
Employer.

118 COMPUTER

ACADEMIA SINICA
Taiwan, Republic of China

Institute of Information Science

Applications are invited for research posi¬
tion in Institute of Information Science,
Academia Sinica. Ph.D. in Computer Sci¬
ence or closely related fields required.
Demonstratable research ability necessary.
Applicants for senior positions must have
proven research record. All fields in Com¬
puter Science are welcome.

The Institute offers a good research en¬
vironment. No duty of teaching. Facilities in¬
clude a 32-node NCUBE 2 parallel super¬
computer, many SUN, SGI, and E&S work¬
stations. An easily accessible ETA-10Q
supercomputer is in the Academia Sinica.

Interested people please send application
to Dr. Y.S. Kuo, Acting Director, Institute of
Information Science, Academia Sinica, Tai¬
pei, Taiwan, 11529, Republic of China. Fax:
(001-886-2) 782-4814.

UNIVERSITY OF
SOUTHWESTERN LOUISIANA

The Center for
Advanced Computer Studies

Faculty Positions
Graduate Fellowships

Candidates with a strong research record
and earned doctorate in Computer Science/
Engineering are invited to apply for tenure-
track and senior positions available starting in
Fall 1991. Appointments are planned for
Professor and Associate Professor ranks,
with consideration given to exceptional can¬
didates at the Assistant Professor rank. Can¬
didates for the senior levels must have
established publication and grant credentials.
Consideration will be given to all outstanding
applicants, but preferred areas of interest are
software engineering, computer networks,
operating systems, databases, computer
architecture, artificial intelligence, and
theoretical computer science.

Our typical teaching load is two graduate-
level courses per year and a continuing
research seminar. Substantial State and
University funds are available to support
research initiation efforts. Salaries are com¬
petitive and excellent support for travel,
equipment, research assistants, and profes¬
sional activities is provided so you can
achieve your professional goals. Our Collo¬
quium Series brings typically 8 world known
professionals to our campus each year.

A number of Ph.D. Fellowships valued at
up to $18,000 per year including tuition and
fees are available. They provide support for
up to 4 years of study towards the Ph D. in
Computer Science or Computer Engineer¬
ing. Eligible candidates must be U.S. citizens
or hold an earned MS degree from a U.S. or
Canadian University. Recipients also receive
preference for low-cost campus housing.

The Center is a graduate research center
of 36 faculty and staff with programs leading
to MS/Ph.D. degrees in Computer Science
and Computer Engineering. The Center is
located in Acadiana about 100 miles west of
New Orleans. External grants/contracts sup¬
port research in a wide range of areas. The
Computing Research Laboratory includes a
60-node Sun network, an Encore parallel
processing system, 2 VAX 11/780’s, 2

Cogent XTM parallel computing systems, a
comprehensive digital design lab, laser
printers, plotters, FAX, and other equip¬
ment. Instruction utilizes a 3-processor
Pyramid 90X network running UNIX and an
IBM 3090-200 with a vector processor.
Several other well-equipped laboratories
suport research in Image Processing & Pat¬
tern Recogniton, VLSI Design, Parallel
Computing and Graphical Information Sys¬
tems, and Intelligent Robotic Machines.
About 210 students are enrolled in com¬
puting graduate programs, including 100 for
the Ph.D. The undergraduate program in
the Computer Science Department is ac¬
credited by CSAB and offers both scientific
and commercial options, with a current en¬
rollment of 277. The undergraduate pro¬
gram in the Electrical and Computer Engi¬
neering Department is accredited by ABET
and offers an option in Computer Engineer¬
ing, with a current enrollment of 156.

To apply, send a copy of your resume and
the names and addresses of at least three
professional references. Applications will be
considered until all positions are filled.

Dr. Michael C. Mulder, Director, The
Center for Advanced Computer Studies,
USL, Lafayette, LA 70504-4330. Phone:
(318) 231-6284. E-Mail: cathy@cacs.usl.edu.

UNIVERSITY OF NOTRE DAME
Chairperson

Department of Computer Science
and Engineering

The University of Notre Dame invites ap¬
plications for the Chair of the recently
established Department of Computer Sci¬
ence and Engineering in the College of Engi¬
neering. This position is a unique opportuni¬
ty to provide significant input in establishing
direction for the initiation and growth of
programs in this department. Persons with
established records in education and scholar¬
ship who would welcome the challenge of
developing a new department and its pro¬
grams are encouraged to apply. The faculty
of the department is expected to determine
the curricula leading to graduate and under¬
graduate degrees in computer science and in
computer engineering.

The Department of Computer Science
and Engineering has twelve tenure-track
faculty positions. The Department of Elec¬
trical Engineering and its present graduate
and undergraduate options of emphasis in
computer engineering are expected to pro¬
vide the foundation for the programs in the
new department. It is anticipated that the
Department of Computer Science and Engi¬
neering will have close cooperative ties with
the Department of Electrical Engineering,
Department of Mathematics, and other aca¬
demic units.

Qualified applicants are encouraged to
submit a resume and letter of interest to:

Dr. Panos J. Antsaklis
Department of Electrical Engineering
University of Notre Dame
Notre Dame, IN 46556
For additional information, please contact

the Dean’s office at (219) 239-5534.
The University of Notre Dame invites ap¬

plications from all qualified persons without
regard to sex, ethnic origin, religious pref¬
erence or physical impairment.

UNIVERSITY OF CENTRAL FLORIDA
Computer Engineering

The University of Central Florida College
of Engineering invites applicants for tenure-
track Assistant Professor positions in its
Department of Computer Engineering begin¬
ning with the Fall term of 1991. A Ph.D. in
Computer Engineering or a related discipline
or substantial completion of the degree by
the closing date is required. All interest areas
will be considered although current prefer¬
ence areas include Software Engineering,
Computer Control Systems, Real-time simu¬
lation, and Computer Architecture. UCF is a
member of the State University System of
Florida and has a current enrollment in ex¬
cess of 21,000 students. The College of
Engineering has over 3,500 students at pre¬
sent. The University is developing a Re¬
search Park adjacent to its main campus to
support high-technology government and
industrial activity in the Central Florida area.
Computer facilities for instruction and re¬
search include a Sun Workstation Network,
an NCUBE Parallel Machine and numerous
mini and micro computers.

Send Resumes and the names of three
references postmarked by February 15,
1991, to:

Dr. C.S. Bauer, Chair
Department of Computer Engineering
University of Central Florida
Orlando, FL 32816
Phone: (407) 823-2236,
FAX 407-823-5483
The University of Central Florida is an

Equal Opportunity/Affirmative Action em¬
ployer. As an agency of the State of Florida,
the University makes all application materials
and selection procedures available for public
review.

UNIVERSITY OF WISCONSIN-
MILWAUKEE

Faculty Positions in Computer Science

The Department of Electrical Engineering
and Computer Science at the University of
Wisconsin-Milwaukee is recruiting Computer
Science faculty at the junior and senior levels.
All candidates should have a commitment to
research and teaching. Senior candidates are
expected to have excellent research records.
Areas of interest are in Artificial Intelligence,
Software Engineering, Computer Networks,
Parallel and Distributed Computation.

The Department offers undergraduate and
graduate programs in Computer Science and
has 12 full time Computer Science faculty
members. Our current research strengths in¬
clude Data Security, Cryptography, Fault
Tolerant Computing, Computational Geome¬
try, and Parallel and Distributed Computa¬
tion. Computer Science research and instruc¬
tion are supported by a modern computing
environment. The University is located near
the shores of Lake Michigan close to pleasant
residential neighborhoods and lovely parks.
Interested individuals are requested to send a
resume to Professor K. Vairavan, CoChair for
Computer Science, Department of Electrical
Engineering and Computer Science, Univer¬
sity of Wisconsin-Milwaukee, Milwaukee, WI
53201. The University of Wisconsin is an
Affirmative Action/Equal Opportunity
Employer.

December 1990 119

UNIVERSITY OF CALIFORNIA, DAVIS
Faculty Positions in Electrical

Engineering and Computer Science

The Department of Electrical Engineering
and Computer Science at UC Davis invites
applications for various tenure track positions.
The primary areas of interest are Computer
Engineering and Microprocessor Applica¬
tion; Electronic Circuits; Image Processing
and Computer Vision; and Optoelectronics.
One position in the area of image processing
and one in the area of optoelectronics is
open to all ranks. Ohter positions are at the
assistant professor level.

The department, with 53 faculty members
and 180 full-time graduate students, is
experiencing rapid growth. Our College is
the nation’s sixteenth largest producer of
engineering Ph.D.’s in a University which
has the nineteenth largest extramural re¬
search funding. Salary and benefits are ex¬
tremely attractive.

Davis is a pleasant, family-oriented com¬
munity near Sacramento, within easy driving
distance to Silicon Valley, the Lawrence
Livermore National Laboratory, San Fran¬
cisco, the Pacific Ocean, and the Sierra
Nevada Mountains.

We are seeking individuals with strong
records of teaching and research and with
ambitious plans. Senior appointments re¬
quire outstanding records of achievement;
junior appointments must show evidence of
great promise. All faculty are expected to
have a strong commitment to teaching at all
degree levels, and to demonstrate the ability
to attract significant research support.

The positions require a Ph.D. degree or
equivalent, and are open until filled; but in
order to assure consideration, applications
should be received by March 1, 1991. Send
a resume and the names of at least three
references to:

Professor S. Louis Hakimi, Chair
Attention: Faculty Search Committee
Department of Electrical Engineering and

Computer Science
University of California
Davis, CA 95616
The University of California, Davis, is an

equal opportunity/affirmative action
employer.

CASE INSTITUTE OF TECHNOLOGY
CASE WESTERN RESERVE

UNIVERSITY

We invite applications for tenure track
faculty positions at all levels. Candidates
from ail research areas will be considered,
but the thrust research areas in the Depart¬
ment are VLSI systems and design automa¬
tion, applied artificial intelligence and logic
programming, database design and systems,
and software systems and design environ¬
ments. Candidates should have a Ph.D. in
computer science or computer engineering
or closely allied fields; competitive salaries
will be offered to attract the best candidates.

CWRU is a private university with a total
enrollment of 8,400, of which 5,100 are
graduate and professional students. The
Engineering School of Case Institute of
Technology is among the top ten engineer¬
ing schools in terms of research funding per

faculty member and undergraduate student
quality. The University campus is the hub of
the pleasant area known as University Circle,
an incorporation with neighboring cultural
centers and museums, about five miles from
downtown Cleveland.

The Department of Computer Engineer¬
ing and Science has 14 faculty positions, and
a graduate student body of 110 students, 40
of which are in the Ph.D. program. Depart¬
mental facilities are based upon an ethernet
local area network, connected to INTER¬
NET, which supports a UNIX operating sys¬
tem and about 40 SUN and other worksta¬
tions. In addition, faculty and students
participating in the Center for Automation
and Intelligent Systems Research have ac¬
cess to the Center’s computing facilities.

The Department recently acquired the
Nord Professorship, supported by a dona¬
tion of over one and a half million dollars, for
which we invite distinguished senior faculty
applicants. This position will provide addi¬
tional funds for travel, graduate student sup¬
port and equipment.

Applicants should submit their curriculum
vitae and names of at least three references
to: Lee J. White, Chairman, Department
of Computer Engineering and Science,
Case Western Reserve University, Cleve¬
land, Ohio 44106; INTERNET: leew@
alpha.ces.cwru.edu; candidates with pre¬
vious academic experience may wish to pro¬
vide at most three reprints of their most
important publications.

An equal employment and affirmative ac¬
tion employer.

UNIVERSITY OF
SOUTHERN CALIFORNIA

Computer Science

Applications are invited for senior or junior
tenure-track faculty positions in Computer
Science. Candidates should have a strong
commitment to research. Openings exist in
most areas of experimental and theoretical
computer science; with emphasis on operat¬
ing systems, networks, compilers, artificial
intelligence, graphics, geometric modeling,
software engineering, and parallel algo¬
rithms and languages. The department cur¬
rently has 19 full-time faculty, 135 doctoral
students and annual research support excess
of $3 million.

Research computing facilities include
some 50 Sun 3 and Sun 4 workstations, a
32-node Intel IPSC/2-d5 hypercube, 4 TI
Explorer Lisp machines, and numerous per¬
sonal computers. An 8-processor Alliant
and a 64K processor Connection Machine
(located at the USC Information Sciences In¬
stitute) are also available for research via
high-bandwidth networks. Research labora¬
tories are dedicated to Brain Modeling, Ar¬
tificial Intelligence, Programmable Auto¬
mation, Robotics, Databases, Networking,
Graphics and Animation, and Software Engi¬
neering. Teaching is supported by an addi¬
tional 100 Sun workstations. Interested can¬
didates should send a resume and a list of
references to: Prof. Ellis Horowitz, Acting
Chairman, Computer Science Department,
SAL 200, University of Southern California,
Los Angeles, CA 90089-0782.

USC is an Equal Opportunity/Affirmative
Action Employer.

BALL STATE UNIVERSITY
MUNCIE, INDIANA

Announcement of Position Vacancy
Computer Science

Faculty position available Fall 1991 in any
major area of computer science. Back¬
ground in software engineering, operating
systems, communication, or compilers pre¬
ferred. Faculty will teach computer science
courses for masters degree and undergradu¬
ate students. An active scholarship program
is expected. Minimum Qualifications: Ph.D.
in computer science; ABD acceptable if
degree is completed by Fall 1992. Preferred
Qualifications: Ph.D. in computer science; at
least two years experience in software devel¬
opment and teaching; excellent teaching
record and several publications. Send
resume, three letters of reference and official
transcripts to Dr. Wayne M. Zage, Chairper¬
son of Search and Selection Committee, De¬
partment of Computer Science, Ball State
University, Muncie IN 47306. Review of ap¬
plications will begin February 15, 1991, and
continue until the position is filled.

Ball State University Practices Equal Op¬
portunity in Education and Employment.

EAST STROUDSBURG UNIVERSITY

Ph.D. in Computer Science full-time con¬
tinuing position available. The position will
consist of teaching courses at both the grad¬
uate and undergraduate levels and directing
master’s research projects and theses. The
department has well respected undergradu¬
ate and graduate programs and maintains a
high quality of grant supported investigative
research. Desirable geographic location.
Rank and salary depending on background
and experience. Excellent fringe benefits.
Apply by Janaury 15, 1991. Affirmative Ac¬
tion/Equal Opportunity employer. Women
and minorities especially urged to apply.
Send resume, transcripts and names and ad¬
dresses of three references to

Professor Richard G. Prince
Department of Computer Science
East Stroudsburg University
East Stroudsburg, PA 18301

COMPUTER APPLICATIONS
ENGINEER

Design and develop software for scientific
and engineering applications. Derive re¬
quirements from high level system and inter¬
face definitions or operations scenarios and
user descriptions. Prepare and complete
high level and detailed designs and translate
design into high level codes and assembly
languages. Correct self-caused errors,
develop test requirements, evaluate results,
prepare reports, convey results to customers
and staff. Requires MS computer science,
1 yr. experience in independent technical
research, preparation of engineering reports,
and presentation of results. Excellent com¬
munication skills required to advise and
assist employees and customers. 40 hrs. wk,
$2,700 per month. Reply Huntington Job
Service, 914 Fifth Avenue, Huntington,
WV 25713, (304) 538-5525, Job Order
#WV0410726 and Job Order *WV0410614.

120 COMPUTER

MEMORIAL UNIVERSITY OF
NEWFOUNDLAND

St. John’s, Newfoundland, Canada
Head, Department of Computer Science

Applications and nominations are invited
for the position of Head of the Department of
Computer Science. The department offers
undergraduate and graduate programs to
the M.Sc. level, and is about to apply for a
Ph.D. program. It has 23 faculty and 14 staff
members. Active research areas include
design and analysis of algorithms, parallel
and distributed computations, software
aspects of VLSI design, computer graphics,
database concurrency control and recovery,
petri net theory and applications, numerical
analysis, software engineering and pattern
recognition.

The department provides a UNIX soft¬
ware development environment supported
by a network of RISC based workstations
and servers. An optical fibre link allows ac¬
cess to additional university computing
facilities such as VAX systems running VMS
and a Convex system. An off-campus Am¬
dahl 5890 is also available. Other machines
are accessible through CA*NET.

Memorial University has a student popula¬
tion of about 15,000, and is the only univer¬
sity in the province of Newfoundland and
Labrador. St. John’s is the provincial capital
with a population of oyer 150,000, and the
oldest city in North America. It enjoys a
moderate climate and offers numerous out¬
door activities throughout the year.

Applicants should have demonstrated ex¬
cellence in research and teaching in Com¬
puter Science, and be able to show leader¬
ship and administrative ability appropriate to
the post. The appointment will normally be
made at the rank of Professor. The deadline
for receipt of applications is 1 January 1991.

Please address inquiries, nominations,
and applications, including a full Curriculum
Vitae and the names of at least three
referees, to

Dr. Bruce Shawyer, Chairman,
Search Committee for Head of Computer
Science,
Department of Mathematics and Statistics,
Memorial University,
St. John's, Newfoundland, Canada.
A1C 5S7.
Telephone: (709) 737-8783. FAX: (709)
737-3010.
Memorial University encourages both

men and women to apply for this position.
In accordance with Canadian Immigration

requirements, priority will be given to Cana¬
dian citizens and permanent residents of
Canada.

GEORGE MASON UNIVERSITY
School of Information

Technology and Engineering
Chair, Department of

Computer Science

Chair, Department of Computer Science,
George Mason University. The School of In¬
formation Technology and Engineering at
George Mason University invites nomina¬
tions/applications for the position of Chair of
the Department of Computer Science. The
School seeks an individual with strong ad¬
ministrative qualities who will provide in¬

novative and energetic leadership. The suc¬
cessful candidate must possess credentials
of the highest quality, including an earned
doctorate and an established reputation in
Computer Science. George Mason Univer¬
sity (GMU) is a state university located in
Fairfax County, Virginia, which is a heavily
concentrated area of computer-oriented
high technology industries. GMU is just 16
miles from the cultural and cosmopolitan ac¬
tivities of Washington, D.C. The Depart¬
ment of Computer Science (CS) currently
has 20 full-time faculty (plus a number of
visitors and adjunct faculty). We offer BS
and MS degrees in Computer Science, and a
Ph.D. in Information Technology with a
specialization in computer science. In addi¬
tion to the Department of CS, the School of
Information Technology and Engineering
has Departments of Electrical and Computer
Engineering, Information Systems and Sys¬
tems Engineering, and Operations Research
and Applied Statistics. The Department of
CS has special research laboratories in ar¬
tificial intelligence, parallel computation, im¬
age processing/vision, neural networks, and
software engineering. Specialized computer
laboratories of other departments are also
available. The Department has Microvax,
Suns, and Mac workstations, transputer
systems, hypercubes, and other computing
facilities. There are approximately 500
undergraduate BSCS majors, 260 graduate
MSCS majors, and 360 doctoral students in
the interdisciplinary Ph.D. program. The
new Chair is expected to provide leadership
in identifying potential areas of research,
recruiting new faculty, enhancing research
funding, and developing new programs in
the Department. Inquiries from candidates
for this position should be sent to Professor
Carl Harris, Chair, CS Chair Search Com¬
mittee, Room 201, Science and Technology
I, George Mason University, Fairfax, Vir¬
ginia 22030. Documents may also be sent
electronically to charris@gmuvax.gmu.
edu (INTERNET) or charris@gmuvax.bit-
net. GMU is an Equal Opportunity/Affirma¬
tive Action Employer. Closing Date is March
1, 1991.

THE UNIVERSITY OF ALABAMA

The University of Alabama, Tuscaloosa,
invites applications for the position of depart¬
ment head in Computer Science. The de¬
partment head reports to the Dean of the
College of Engineering and has both teach¬
ing and administrative responsibilities. Ap¬
plicants must hold the Ph.D. in Computer
Science or a closely related field and have
demonstrated therein, a strong commitment
to teaching and research. The new depart¬
ment head must be able to provide leader¬
ship in increasing sponsored research and
building the Ph.D. program. Experience as
an administrator in an academic setting is
desired. Rank and salary will be commen¬
surate with qualifications. Please submit a
resume and names, addresses, and tele¬
phone numbers of three references to: Dr.
William G. Nichols, Box 870290, Tusca¬
loosa, AL 35487-0290. The search commit¬
tee will begin its review process January 7,
1991, but applications will be accepted until
the position is filled. The University of
Alabama is an affirmative action, equal op¬
portunity employer.

RUTGERS, THE STATE UNIVERSITY
OF NEW JERSEY

Federal Aviation Administration
Fellowships

For the M.S. and Ph.D. degrees. Re¬
search in all areas related to aviation safety.
Applications due by February 15, 1991.
Write Graduate Director. Electrical Engi¬
neering, Piscataway, NJ, 08855-0909, or
write Graduate Director, Computer Science,
New Brunswick, NJ 08903.

UNIVERSITY OF
SOUTHERN CALIFORNIA

The Computer Engineering Division of
the Department of Electrical Engineering-
Systems at the University of Southern
California is expanding, and looking to fill
positions at the Assistant, Associate, and Full
Professor level in the following areas: VLSI/
CAD, networks (optical type), and architec¬
ture with an emphasis on hardware. Addi¬
tionally , we are looking for a full-time instruc¬
tor (M.A. only required) to support the
Computer Science/Computer Engineering
undergraduate degree program. For all
openings, please send a resume and the
names of at least three academic references
to Jerry M. Mendel, Chairman, Department
of Electrical Engineering-Systems, Univer¬
sity of Southern California, Los Angeles, CA
90089-0781. USC is an equal opportunity/
affirmative action employer.

WASHINGTON UNIVERSITY

Washington University in St. Louis seeks
qualified candidates for the position of Pro¬
fessor and Chair of the Department of Com¬
puter Science, with a desired starting date of
July 1, 1991. We are interested in candi¬
dates with a strong research record, with a
dedication to excellence in undergraduate
and graduate education and with a demon¬
strated potential for administration and
leadership.

The Department has an excellent under¬
graduate program as well as a strong and ex¬
panding graduate program. The primary re¬
search concentrations are in distributed
systems, advanced communication networks
and intelligent computer systems with an
emphasis on visualization as a tool in each
case. The Department plans to continue
building on these areas of strength as well as
expanding into new areas. There are 15
regular faculty in the Department and 85
graduate students, as well as an excellent
technical support staff and a large pool of af¬
filiate faculty. Departmental laboratory
facilities are very good and include a visuali¬
zation laboratory, a systems prototyping lab,
an NCUBE parallel computer, a variety of
compute servers and ubiquitous workstations.

Washington University has a longstanding
commitment to the principle that all can¬
didates should be afforded equal opportuni¬
ty regardless of age, race, sex or physical
disability. Candidates must send a cur¬
riculum vitae and a list of references to: Pro¬
fessor C.I, Byrnes, Search Committee for
the Computer Science Chair, Campus Box
1040, Washington University, One Brook¬
ings Drive, St. Louis, MO 63130.

December 1990 121

ELECTRONICS DESIGN ENGINEER

Acting as project leader, develop and im¬
plement revolutionary system capable of
controlling multiple access points (passcard
readers), multiple users (cashiers and man¬
agers) and multiple Programmable Logic
Controllers for access and revenue control,
and security/theft prevention at 2,000 park¬
ing lots and garages situated in 80 cities.
Design and develop electrical circuits, elec¬
tronic components, visual imaging systems,
real-world signal systems and multi-user net¬
works; design microcomputer hardware and
software; design small controllers and em¬
bedded controllers; design and build inter¬
face and switches for an extensive point-of-
sale computer application systems. Develop
license plate Optical Character Recognition
systems to read and transmit license plate to
host computer. Develop specialized local
area networks to network multiple cashier
and front desk terminals. Apply electronic
engineering principles, research data and
propose product specifications. Direct or
coordinate manufacturing or building of pro¬
totype system. Plan and develop test pro¬
gram. $31,500 per annum, 40 hour work
week. Must have B.S. in Electrical Engineer¬
ing. Require one graduate level course in
Very Large Scale Integrated Circuit Design.
Inquire at Texas Employment Commission,
Houston, Texas, or send resume to the Texas
Employment Commission, TEC Building,
Austin, Texas 78778, J.O. *5424763. Ad
paid by an equal employment opportunity
employer.

SOUTHERN ILLINOIS UNIVERSITY
AT CARBONDALE

Applications are invited for one or two
tenure track faculty positions in Computer
Science. One position is at the Assistant Pro¬
fessor level beginning August 16, 1991. A
second, similar position opening, may be¬
come available depending upon funding.
Candidates should have a broad com¬
petence in computer science and/or com¬
puter engineering. All fields of specialization
will be considered, with the Department
seeking to strengthen the areas of operating
systems, software engineering and net¬
works. Evidence of on-going and future
research, a commitment to teaching and
willingness to participate fully in the Depart¬
ment’s graduate and undergraduate pro¬
grams are basic requirements. Applicants
should have, or expect to receive in 1991, a
Ph D. in Computer Science or Computer
Engineering. Departmental facilities include
a network of personal computers, Sun and
VAX workstations and a shared-memory
parallel machine—the Sequent Balance
8000. IBM mainframe computers, including
a 3090 with vector processing and various
network capabilities, are also available for
research and teaching.

Applications will be accepted until March
1, 1991, or until the positions are filled.
Resumes and three letters of reference
should be sent to: Faculty Recruitment Com¬
mittee, Department of Computer Science,
Southern Illinois University at Carbondale,
Carbondale, IL 62901-4511.

SIUC is an Equal Opportunity, Affirma¬
tive Action Employer.

AUBURN UNIVERSITY
Earle C. Williams Eminent Scholar

Chair in Electrical Engineering

Nominations and applications are invited
for the Earle C. Williams Eminent Scholar
Chair in Electrical Engineering. Candidates
for this chair should have achieved national
and international prominence in digital sys¬
tems and/or microelectronics.

Applicants or nominees must have an
earned doctorate, senior academic experi¬
ence, and a documented record of distinc¬
tion in university teaching and research. The
successful candidate will be expected to pro¬
vide intellectual leadership in his/her area of
expertise for the Department of Electrical
Engineering as well as enrich the scholarly
environment at Auburn University.

Auburn University is located in the city of
Auburn in east-central Alabama. This land-
grant university enrolls more than 21,000
students, the largest on-campus enrollment
in the state. The Department of Electrical
Engineering, one of eight departments within
the College of Engineering, offers Bachelor,
Master, Master of Science and Ph.D. degrees
in Electrical Engineering. The department
has a current enrollment of 939 undergradu¬
ate students and 100 graduate students. The
28 full-time faculty have an annual research
expenditure of approximately $2 million.

The Search Committee will begin its re¬
view of applications immediately. Interested
candidates should submit: (1) a detailed
resume, (2) a letter indicating an interest in
the chair, the candidate’s academic philos¬
ophy, and a brief statement of accomplish¬
ments in teaching and research, and (3)
names and addresses of five references.
Nominations should be submitted with the
complete name, mailing address and tele¬
phone number of the individual nominated.

Applications and nominations should be
sent to Professor J. David Irwin, Department
of Electrical Engineering, Auburn University,
AL 36849-5201. Auburn University is an af¬
firmative action/equal opportunity employer.
Applications from minority and female can¬
didates are encouraged.

CASE INSTITUTE OF TECHNOLOGY
NORD Professorship in

Computer Engineering and Science

The Department of Computer Engineering
and Science at Case Institute of Technology
is seeking a nationally recognized scholar
and researcher to fill the NORD Professor¬
ship. This position was recently established
by the donation of over one and a half mil¬
lion dollars, which will provide outstanding
professional opportunities and a highly com¬
petitive salary, together with additional funds
for travel, graduate student support and
equipment. The qualifications include a
Ph.D. in computer science, computer engi¬
neering or closely allied fields, and an ability
to establish and develop external support for
a nationally recognized research program in
computer science/computer engineering.
We invite applications from senior faculty at
both the associate professor and full pro¬
fessor levels.

CWRU is a private university with a total
enrollment of 8,400, of which 5,100 are
graduate and professional students. The

Engineering School of Case Institute of
Technology is among the top ten engineer¬
ing schools in terms of research funding per
faculty member and undergraduate student
quality. The University campus is the hub of
the pleasant area known as University Circle,
an incorporation with neighboring cultural
centers and museums, about five miles from
downtown Cleveland.

The Department of Computer Engineer¬
ing and Science has 14 faculty positions, and
a graduate student body of 110 students, 40
of which are in the Ph.D program. Depart¬
mental facilities are based upon a ethernet
local area network, connected to INTER¬
NET, which supports a UNIX operating sys¬
tem and about 40 SUN and other worksta¬
tions. In addition, faculty and students
participating in the Center for Automation
and Intelligent Systems Research have ac¬
cess to the Center’s computing facilities.

Applicants should submit their curriculum
vitae and names of at least five references to:
Lee J. White, Chairman, Department of
Computer Engineering and Science,
Case Western Reserve University, Cleve¬
land, Ohio 44106; INTERNET: leew@
alpha.ces.cwru.edu; applicants may wish to
provide at most three reprints of their most
important publications.

An equal employment and affirmative ac¬
tion employer.

WRIGHT STATE UNIVERSITY
Department of Computer Science

and Engineering
Dayton, Ohio 45435

Applications are invited for the position of
INSTRUCTOR in the Department of Com¬
puter Science and Engineering to teach
undergraduate courses. Instructor is a non¬
tenure track position. At least an MS in CS,
CEG, or a related discipline is required with
some teaching experience preferred. Review
for positions will begin December 1, 1990
and continue until filled. Send applications,
resume, three references, and official tran¬
scripts to Dr. A.D. McAulay, Department of
CS&E, Wright State University, Dayton,
OH 45435. Wright State University is an
EO/AA employer.

TRANSYLVANIA UNIVERSITY
Computer Science

Assistant/Associate Professor

Full-time, tenure track, Ph.D. in computer
science or master’s in computer science with
Ph.D. in a closely related field. Rank and
salary dependent upon background. Excep¬
tionally well qualified candidates may be
considered for a Bingham Award for Excel¬
lence in Teaching; smaller, “start-up” grants
are available for less experienced faculty.
This recognition provides a supplement of
up to 50% of base salary for the position.
Transylvania is a private, liberal arts college
with a strong commitment to excellence in
undergraduate education. The program in
computer science is of long standing and is
recognized for its outstanding quality. Please
send letter of application, curriculum vitae,
and names of three references to Dr. Dwight
W. Carpenter, Computer Science Program,
Transylvania University, Lexington, KY
40508. An Equal Opportunity Employer.

122 COMPUTER

THE UNIVERSITY OF TAMPA
Computer Information Systems

The College of Business, CIS Depart¬
ment, announces a CIS position with teach¬
ing responsibilities in all areas of the cur¬
riculum, commencing August 1991. A Ph.D.
in CIS/MIS/CS is preferred although ABD's
acceptable. Knowledge of Artificial Intel¬
ligence, Object Oriented Design, Computer
Graphics, and/or Decision Support Systems
is desired. The College of Business rewards
teaching excellence and encourages faculty
contact with the business community. This
position is a tenure-track with rank and salary
dependent on qualifications.

Applicants should send a letter of applica¬
tion and an attached vita by January 1, 1991
to:

Dr. Gordon Couturier, Coordinator
College of Business, CIS Department
The University of Tampa
401 West Kennedy Boulevard, Box 131F
Tampa, FL 33606-1490
The University of Tampa is an Equal Op¬

portunity, Affirmative Action Employer and
encourages women and minorities to apply.

THE UNIVERSITY OF GEORGIA
Associate Vice President for

Computing and Networking Services

Applications and nominations are invited
for the Associate Vice President for Com¬
puting and Networking Services at the Uni¬
versity of Georgia. The University of
Georgia, located in Athens, enrolls 28,000
students in thirteen colleges and schools. It is
the flagship university among the 34 state-
supported institutions of higher education
comprising the University System of Georgia.

The Associate Vice President for Com¬
puting and Networking reports to the Vice
President for Academic Affairs and is re¬
sponsible for campus-wide leadership,
strategic planning, and coordination of the
computing and networking facilities required
by a comprehensive, modern university.
S/he serves as a focal point for the articula¬
tion and implementation of an institutional
vision of the optimal role of computing and
networking in support of the University’s
teaching, research and service activities. In
pursuit of these responsibilities the Associate
Vice President will have oversight respon¬
sibility for the central computing facilities and
campus data communications network ser¬
vices. S/he will interact with the instruc¬
tional, research, library and administrative
communities.

Qualified applicants should:
• be familiar with the diversity of computing

activities ongoing at a major research
university,

• be familiar with telecommunications net¬
works and distributed computing,

• have a strong technical background which
includes significant computing experience
and broad acquaintance with computing
applications,

• have excellent oral and written com¬
munication skills,

• have strong leadership skills which are
aligned with state-of-the-art, successful
academic computing environments,

• possess a degree from a recognized institu¬
tion of higher learning.

It would be advantageous if applicants
have credentials to qualify for a faculty ap¬
pointment.

Applications and nominations postmarked
by January 15, 1991, are promised full con¬
sideration by the Search Committee. Com¬
plete applications must include a current
resume plus names and addresses of three
references. Candidates are assured of max¬
imum confidentiality permitted by state law,
and no reference will be contacted until the
candidate is first notified. The position
becomes available beginning July 1, 1991.
Please send applications and nominations

Dean John Kozak
Chairman, Screening Committee

The University of Georgia
Franklin College of Arts and Sciences

Athens, GA 30602

THE GEORGE WASHINGTON
UNIVERSITY

School of Engineering and
Applied Science

Visiting Professorships
Research Faculty/Research Staff

Visiting Professorships, Research Faculty,
and Research Staff Positions, at junior and
senior levels, are available in the School
of Engineering and Applied Science, The
George Washington University starting Fall
Semester 1991. The School of Engineering
and Applied Science is organized into four
academic departments: the Department of
Civil, Mechanical and Environmental Engi¬
neering; the Department of Electrical Engi¬
neering and Computer Science; the Depart¬
ment of Engineering Management; and the
Department of Operations Research.

Candidates are especially sought to teach
and/or conduct research in the following
areas: Aeronautics; Aerospace Engineering;
Analog Electronics/VLSI; Astronautics;
Biotechnology Management; Communica¬
tions; Computational Fluid Dynamics; Com¬
puter Aided Design; Computer Engineering;
Computer Graphics; Computer-Integrated
Design and Manufacturing; Computer Sci¬
ence; Decision Analysis; Decision Support
Systems; Electrical Engineering; Engineer¬
ing Management; Environmental Manage¬
ment; Environmental Engineering; Finite
Element and Mechanics; Geotechnical
Engineering; Information Technology Man¬
agement; Manufacturing/Production Man¬
agement; Mathematical Optimization;
Operations Research; Project and Program
Management and Total Quality Manage¬
ment; Reliability; Robotics/Controls;
Simulation; Software Systems Engineering;
Stochastic Processes; Structural Engineer¬
ing; Technology Assessment and Transfer;
and User-Computer Interface.

Appointments are for one-year periods.
Applicants should send vita, including com¬
plete publication list, and three references to:

Visiting Engineers Scholors Program
OR

Research Faculty and Staff Program
School of Engineering and Applied Science
The Geoerge Washington University
Washington, D.C. 20052
The George Washington University is an

Affirmative Action/Equal Opportunity
Employer.

THE INSTITUTE FOR
COMPUTER APPLICATIONS IN
SCIENCE AND ENGINEERING

(ICASE) is seeking postdoctoral fellows or
visiting senior researchers. Active research
areas in computer science at ICASE include
design and implementation of tools and
compilers for distributed memory and SIMD
multiprocessors, performance modeling and
prediction of miltiprocessor algorithms and
architectures, analysis of shared virtual
memory mechanisms, and parallel algo¬
rithms for sparse matrix problems and for
solving partial differential equations via
adaptive and unstructured mesh methods.

ICASE has access to a variety of multipro¬
cessor computers both locally and via high
bandwidth networks.

ICASE has an iPSC/860 along with local
access to a Cray-2 and a Cray Y-MP. We
also have a high bandwidth link to the NASA
Ames Research Center where access to a
CM-2 and other machines may be arranged.
ICASE operates its own network with the
usual assortment of Suns and graphics
workstations.

We have close academic affiliations with a
wide range of universities and institutes
and maintain a very active summer visitor
program.

Applicants should respond by e-mail to
rgv@icase.edu or should send resumes and
descriptions of proposed research to:

Dr. Robert G. Voigt or Joel Saltz
Director, Lead Computer Scientist
ICASE
Mail Stop 132C
NASA Langley Research Center
Hampton, VA 23665
ICASE is an Equal Opportunity Employer.

UNIVERSITY OF CALIFORNIA,
SANTA CRUZ

Computer Engineering Department in¬
vites faculty applications for two positions.

One Associate or Full Professor, and one
Assistant Professor with an application clos¬
ing date of January 1, 1991. Preference will
be given to candidates in the following areas:

One with research and teaching interests
in graphics and imaging, with emphasis on
applications and systems. An interest in
workstation interfaces and networking is
desirable. (Provision *233-901).

One with research and teaching concen¬
tration in computer systems architecture. A
strong interest in hardware and design that
would exploit our department’s strengths
in VLSI/CAD is desirable. (Provision
*175-890).

Salary range for the tenured position,
$57,000-$80,700 and for the tenure-track
position, $46,800-$49,200 (9 month basis).

A Ph.D. in Computer Engineering, Elec¬
trical Engineering, Computer Science or
equivalent is required. For complete infor¬
mation please contact: Chair, Computer
Engineering Faculty Search Committee,
Baskin Center for Computer Engineering &
Information Sciences, Applied Sciences
Building, University of California, Santa
Cruz, CA 95064. (Questions may be sent via
email to recruit@saturn.ucsc.edn or
recruit@ucsccrls.bitnet.) UCSC is an
EEO/AA/IRCA employer.

December 1990 123

NJIT
Faculty:

Computer and Information Science

NJIT seeks assistant, associate and full
professors for Spring/Fall 1991 in distributed
computing including computer architecture,
operating systems, data communications
and networking, realtime computing and
fault tolerance, software development in¬
cluding compiling, computer graphics, office
automation, data management systems, in¬
formation management systems, cognitive
science, and computational linguistics; com¬
puter graphics and computer visions and
other areas. Qualifications: Ph.D. in com¬
puter science or closely related field re¬
quired; senior level applicants must have
proven research and funding record.

The department offers B.S., B.A., M.S.
and Ph.D. in computer science. Computing
facilities include the $30 million Information
Technologies Building with VAX 6400,
VAX 8530, IBM 4361, SUN workstations,
Symbolics machines, TI Explorers and
graphic systems. Send resume and names of
three references to: Personnel Box CIS.

NJIT is the technological university of
New Jersey with nearly 8,000 students en¬
rolled in Newark College of Engineering, the
School of Architecture, the College of
Science and Liberal Arts and the School of
Industrial Management.

NJIT does not discriminate on the basis of
sex, race, color, handicap, religion, national
or ethnic origin or age in employment.

NEW JERSEY INSTITUTE OF
TECHNOLOGY

University Heights
Newark, NJ 07102

DARTMOUTH COLLEGE
Computer Science

Dartmouth College invites applications for
positions in computer science and engineer¬
ing. This solicitation represents a joint
recruiting effort of the Department of Mathe¬
matics and Computer Science and the
Thayer School of Engineering for faculty
who will serve as faculty in the Ph.D. Pro¬
gram in Computer Science as well as hold an
appointment in either the Department of
Mathematics and Computer Science or the
Thayer School of Engineering. Faculty in
these positions teach at the graduate level
and conduct research under the auspices of
the Ph.D. Program and also teach under¬
graduates in their respective units. Can¬
didates must excel in both teaching and
research. A Ph.D. in computer science,
computer engineering, or a related field is
required.

Program faculty have Sun, IBM, and DEC
workstations in their offices with network
connections to a number of VAX, IBM, and
Honeywell mainframes, as well as Convex
and Alliant minisupercomputers. Micropro¬
cessor development and CAD systems,
graphics terminals, and microprocessor
laboratories are also available.
Department of Mathematics and
Computer Science

Applications are invited for tenure track
positions in Computer Science at all levels,
Assistant, Associate, and Full Professor.

Candidates in languages, systems, and ar¬
tificial intelligence are especially encouraged
to apply. There are currently ten Computer
Science faculty in the department, which
conducts the undergraduate major in Com¬
puter Science at Dartmouth. Current re¬
search includes algorithm analysis and
design, computer languages and systems,
theory, computational geometry, databases,
parallel and distributed computation, com¬
puter vision, system security, logic program¬
ming, and signal processing.

Interested persons should submit a
resume and names of three references to
Prof. Donald B. Johnson, Department of
Mathematics and Computer Science, Brad¬
ley Hall, Dartmouth College, Hanover, NH
03755. Review of applications will begin in
January, 1991, and will continue until the
search is complete.

Thayer School of Engineering
Applications are invited for senior and

junior tenure track appointments. Significant
expansion is in progress with additional new
positions anticipated during the next few
years. Of special interest are candidates in
VLSI, with CAD experience and an interest
in system design. Current research in com¬
puter engineering has focused on the design
of special purpose computational structures,
with the intent of supporting areas of scien¬
tific research that can benefit from custom¬
ized computing power. A Rapid Prototyping
Laboratory is being developed for the con¬
struction of these digital systems, so can¬
didates with an interest in developing proto¬
type systems are particularly encouraged to
apply.

Interested persons should submit a resume
and names of three references to Prof. Barry
S. Fagin, Thayer School of Engineering,
Dartmouth College, Hanover, NH 03755.
Review of applications will begin in January,
1991, and continue until the positions are
filled.

Dartmouth College is an equal oppor¬
tunity/ Affirmative Action employer and en¬
courages applications from women and
members of minority groups.

EASTERN CONNECTICUT STATE
UNIVERSITY

The Mathematics/Computer Science De¬
partment of Eastern Connecticut State Uni¬
versity invites applications for two tenure-
track, rank-open appointments beginning
September 1991. Candidates must have a
Ph.D. in Computer Engineering or Com¬
puter Science. Applicants must have a
strong commitment to undergraduate teach¬
ing, a willingness to write grants, the ability to
conduct research in computer science or
mathematics, and an interest in participating
in the ongoing development of a liberal arts
Computer Science program based on ACM
guidelines. Screening of applicants will begin
immediately and continue until the position
is filled. ECSU is an Affirmative Action/Equal
Opportunity Employer. Send letter of interest,
a current vita and arrange for three letters of
recommendation to be sent to: Dr. C. Gary
Rommel, Chair, Department of Mathematics/
Computer Science, Media 251, Eastern
Connecticut State University Willimantic, CT
06226.

SOFTWARE SUPPORT ENGINEER

Software Support Engineer needed to
conduct high level system design and imple¬
mentation of feature development. Research
and resolve software problems encountered
during the product/feature verification pro¬
cess. Provide a centralized support of the on¬
site verification personnel for the customer.
Provide design and customer support for
digital telecommunications switching pro¬
ducts. Provide technical support as required
by design to reproduce, clarify, and resolve
customer problems, including testing in the
captive office and on site. Requires a
Bachelors' Degree in Computer Science or
its’ equivalent and 1 year experience in job
offered, or 1 year directly related telecom¬
munications Software experience. Or will
consider a Masters’ Degree in Computer Sci¬
ence in lieu of Bachelors’ Degree and experi¬
ence. Background should include 2 semesters
or 6 months experience in network systems,
and computer architecture (which includes
computer logic design). 40 hour work week.
$42,200 per year. Apply at the Texas Em¬
ployment Commission, Dallas, Texas, or
send resume to the Texas Employment Com¬
mission, TEC Building, Austin, Texas 78778
Job Order #5515177. Ad Paid By An Equal
Employment Opportunity Employer.

POLYTECHNIC UNIVERSITY
Computer Science Faculty Positions

The Department of Computer Science in¬
vites applications for faculty members at all
ranks. Candidates must have exceptionally
strong research and publication records. We
are especially interested in candidates with a
major interest in databases, and network
analysis and design, however, candidates
with interests in other areas are also invited to
apply. A Ph.D. in computer science or com¬
puter engineering is required.

Polytechnic has three campuses within the
Metropolitan New York area and one of the
largest graduate computer science programs
in the United States, at both the Masters and
Ph.D. levels. The New York area offers sub¬
stantial opportunities for research interaction
with industry.

The Department of Computer Science is
part of the School of Electrical Engineering
and Computer Science. Major research in¬
terests within our faculty include algorithms,
computer architecture distributed systems,
programming languages, computer vision
and image understanding, and software
engineering. Several faculty members are
actively engaged in research with our Center
for Advanced Technology in Telecommuni¬
cations in the areas of network design and
management, and in the area of distributed
systems.

Please send a resume and the names of at
least three references to Prof. Gad Landau,
CS Search Committee Chair, Department of
Computer Science, Polytechnic University,
333 Jay St., Brooklyn, NY, 11201. Appli¬
cants must be U.S. citizens or have perma¬
nent resident status.

Polytechnic is an Equal Opportunity Em¬
ployer, M/F/H/V.

124 COMPUTER

CLEMSON UNIVERSITY
Department of Electrical and

Computer Engineering

The Department of Electrical and Com¬
puter Engineering at Clemson University in¬
vites applications for tenure/tenure-track
positions, primarily at the assistant professor
level. A Ph.D. is required. Candidates with
research interests in one of the following
areas are sought: communications and digital
signal processing; networks and distributed
computing; quantitative analysis of compu¬
ter architectures; electromagnetic analysis of
active devices (microwave, millimeter wave,
or electro-optic); and multidisciplinary ap¬
plications in power systems (e.g. power and
artificial intelligence; power and computer
communications). A successful candidate
must exhibit exceptional potential for re¬
search and teaching.

Clemson University’s College of Engineer¬
ing was listed as one of the United States’
“up-and-coming” engineering graduate pro¬
grams in the March 19, 1990, issue of U.S.
News and World Report. The ECE Depart¬
ment comprises thirty-six full-time faculty,
approximately 700 undergraduate students,
and 140 graduate students. It offers B.S.,
M.S., and Ph.D. degrees in both electrical
engineering and computer engineering. Fa¬
cilities and/or groups bearing on the areas
indicated above include the Clemson Uni¬
versity Electric Power Research Association
(CUEPRA); a microcircuits reliability re¬
search group with a class 100 clean room;
automated microwave measurement facili¬
ties to 26 GHz; an image processing labora¬
tory; a Center for Computer Communications
Systems.

Resumes, supported with a list of refer¬
ences, should be sent to L. Wilson Pearson,
Head; Department of Electrical and Com¬
puter Engineering; 102 Riggs Hall; Clemson
University; Clemson, SC 29634-0915. In¬
itial screening of applicants will begin Janu¬
ary 15, 1991 and continue until positions are
filled. Clemson University is an Equal Op¬
portunity/Affirmative Action Employer.

THE VIRGINIA MILITARY INSTITUTE
Mathematics/Computer Science

A tenure-track position beginning August,
1991. Applicant should have a strong interest
in teaching.

Preference will be given to applicant with a
Ph.D. in computer science. Applicants with
significant progress toward a Ph.D. will be
considered. Duties include teaching both
computer science and mathematics. Salary
and rank commensurate with qualifications.

VMI is state-supported with 1300 under¬
graduates in engineering, liberal arts, and
science. It is located in an attractive college
town with three colleges within a six mile
radius. Faculty wear uniforms but have no
other military duties.

Deadline for applications is February 1,
1991, but will be extended as necessary.
Send resume, three letters of recommenda¬
tion, and a graduate transcript to George
Piegari, Department of Mathematics and
Computer Science, Virginia Military In¬
stitute, Lexington, VA 24450.

AA/EEO Employer.

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY
Faculty Positions

The Department of Electrical Engineering
and Computer Science seeks candidates for
faculty positions starting in September 1991.
We anticipate openings for several junior
faculty appointments for individuals who are
completing, or who have recently completed,
a doctorate. Senior faculty positions may
also be available in some areas. Faculty
duties include teaching at both the graduate
and undergraduate levels, research, and
supervision of theses.

We are interested in candidates in most
areas of electrical engineering and computer
science, such as artificial intelligence, com¬
munications, computer systems and lan¬
guages, flexible manufacturing, and solid-
state materials and devices.

All candidates should write to the address
below, describing their professional interests
and goals. Applications should include a cur¬
riculum vitae and the names and addresses
of three or more references. Additional
material describing the applicant’s work,
such as papers or technical reports, would
also be helpful. All candidates should in¬
dicate citizenship and, in the case of non-US
citizens, describe their visa status.

Send all applications to:
Prof. F.C. Hennie
Room 38-435
Massachusetts Institute of Technology
Cambridge, MA 02139
M.I.T. is an equal opportunity/affirmative

action employer.

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Department of Computer Science

Applications are invited for tenured or
tenure track positions in Computer Science
beginning July 1, 1990 or later. Ph.D. and
excellence in research and teaching are re¬
quired. Two open rank positions are avail¬
able. One position is targeted to Design
Technology and one to Systems (architec¬
ture, software). Other areas may also be
considered. The duties of the positions in¬
clude teaching at both the undergraduate
and graduate levels, research, and participa¬
tion in the Department and the Computer
Science program.

Prominent senior candidates are especially
encouraged to apply. Candidates will have
an opportunity to participate in shaping a
new developing program in Computer Sci¬
ence, including creating and leading new
research groups.

Send all materials including curriculum
vitae and the names of at least three
references to: Professor Marek Chrobak.
Chairman. Computer Science Recruiting
Committee. Department of Computer Sci¬
ence, University of California. Riverside, CA
92521. The pool of candidates will consist of
all those whose completed applications are
received by March 8, 1991. A complete ap¬
plication shall consist of the cover letter, the
curriculum vitae, three letters of recommen¬
dation, and the publication list .

University of California, Riverside, is an
Affirmative Action/Equal Opportunity
Employer.

THE UNIVERSITY OF WEST INDIES,
ST. AUGUSTINE, TRINIDAD

Applications are invited for the following

Professor/Senior Lecturer in Mathema¬
tics. The Department wishes to strengthen its
research interests in Discrete Mathematics in¬
cluding Combinatorics and Graph Theory
and Applied Mathematics including Fluid
Dynamics.

ANNUAL SALARY RANGE: Professor:
TT$91,788-$111,372. Pension, Passages,
housing, travel grant. Applications detailing
qualifications and experience and naming
three referees to the Registrar as soon as
possible. Further particulars sent to all
applicants.

PROGRAMMER
Engineering Computer Graphics

The initial assignments for this job are
designed to develop competence in applying
programming procedures, coupled with
computer graphics educational background,
to routine problems. As a beginner program¬
mer, the duties involve writing routine new
programs using prescribed graphics specifi¬
cation in “C,” Fortran, and Assembly under
the DOS and UNIX operating environment.
This job involves this person being directly
supervised. The supervisor is the Vice Presi¬
dent of Software development and inclusive
of the above candidate has a total of four
programmers reporting to him. This pro¬
grammer will not have anyone reporting to
him, Master’s degree in Mechanical Engi¬
neering is required. Must have had at least
two courses in computer graphics which deal
with 2 and 3D primitives, interactive graphics
and devices, GKS/PHIGS standards and
engineering graphics application. And at
least one course each in programming in
C/UNIX and assembly. Also, must have
worked on a major research project at the
graduate level in the area of surface render¬
ing and shading of graphics primitives. 40
hours per week, and $634.62 per week.
Apply at the Texas Employment Commis¬
sion, Houston, Texas, or send resumes to
the Texas Employment Commission, TEC
Building, Austin. Texas 78778, J.O.
#5515180 and Ad Paid by an Equal Em¬
ployment Opportunity Employer.

YALE UNIVERSITY

The Department of Electrical Engineering,
Yale University, invites applications for two
senior faculty positions in computer engi¬
neering. The preferred area is computer ar¬
chitecture. Of particular interest are the
design of high-speed computer systems, in¬
cluding multi-purpose parallel architectures,
and the coordinated design of algorithms
and architectures. Applicants should be
recognized leaders in the field with demon¬
strated ability to initiate and lead a research
program. Submit resumes ot Professor P.M.
Schultheiss, Chairman, Department of Elec¬
trical Engineering, Yale University, P.O.
Box 2157 Yale Station, New Haven. CT
06520. Yale University is an affirmative
action, equal opportunity employer.

December 1990 125

UNIVERSITY OF BALTIMORE

Applications are invited for a tenure track
position as Assistant Professor which will
begin, Fall, 1991. Qualifications include a
Ph.D. in Computer Science, potential for
excellence in teaching undergraduate Com¬
puter Science and interest in research. The
University has a large number of part-time
students and offers many evening classes.
Experience teaching in such an environment
would be considered a plus. Candidates
should have a letter of application, a cur¬
riculum vita, and name, address, phone
number of at least three references sent to
Search Committee, Department of Compu¬
ter Science, Mathematics, and Statistics,
University of Baltimore, 1420 N. Charles
Street, Baltimore, Maryland 21201. Appli¬
cations received by January 15, 1991 are in¬
sured full consideration. The University of
Baltimore is an equal opportunity employer.

SIMON FRASER UNIVERSITY
Faculty Positions

School of Computing Science and
Centre for Systems Science

Applications are invited for tenure-track
positions at all ranks, subject to budgetary
authorization. Although, outstanding candi¬
dates in all areas of Computing Science will
be considered, we are particularly interested
in a person in systems.

A Ph.D. in Computing Science (or equi¬
valent) is required and candidates should
have a record of (or strong potential for)
research and publications, graduate student
supervision, and teaching.

The School of Computing Science, has
29 faculty members and offers M.Sc. and
Ph.D. degrees in computing science as well
as B.Sc. and B.A. degrees in computing sci¬
ence, B.Sc. honors degrees in computing
science, digital systems (including VLSI)
design, and math/computing.

The Centre for Systems Science is a multi¬
disciplinary research organization which pro¬
motes excellence in technology-based areas
such as intelligent systems, computer and
communication systems, and microelec¬
tronics. Through the Centre, Fellowships
from the B.C. Advanced Systems Institute
are available to outstanding applicants,
thereby making additional teaching release
and infrastructure support possible.

Together, the CSS and the School have
an impressive research network. The net
consists mainly of SPARCStations and other
SUN workstations with several LISP
machines and high resolution colour work¬
stations, and plotters for AI, graphics and
VLSI design. All faculty offices are con¬
nected to the network. We are located in the
new Applied Sciences building where we
have a diverse collection of research labora¬
tories. Teaching facilities include an in¬
structional laboratory based upon SUN
workstations running UNIX, and various
microcomputer and hardware laboratories.

Simon Fraser University is situated on top
of Burnaby mountain and serves about
16,000 students. Lying just east of Van¬
couver, the site commands magnificent
views of Burrard Inlet, the North-Shore
mountains, the Fraser River, and Vancouver
harbour. The School also has links to a

newly established downtown Vancouver
campus. This lower mainland area of British
Columbia is unique in Canada for its mild cli¬
mate and varied recreational facilities.

Preference will be given to candidates who
are eligible for employment in Canada at the
time of application. Simon Fraser University
is committed to the principle of equity in
employment and offers equal employment
opportunities to qualified applicants. Appli¬
cations will be accepted until the positions
are filled, although a practical cutoff date for
1991 is April 1st. To apply, send a curriculum
vitae, evidence of research productivity
(selected reprints), and the names, addresses,
and phone numbers of three referees to:

Arthur L. Liestman, Director
School of Computing Science

Simon Fraser University
Burnaby, British Columbia, Canada

V5A 1S6
FAX: (604) 291-3045

COLUMBIA UNIVERSITY
Research Programmer

Columbia University Computer Science
Department seeks applicants at Staff Asso¬
ciate level. (BS required. MS preferred, min¬
imum one year research experience) to par¬
ticipate in programming systems research
under faculty supervision. Position involves
prototype design, C/Unix programming,
oral/written presentation, project manage¬
ment, supervision of students. Experience
building software development environ¬
ments. distributed object systems. AI applica¬
tions desirable. Send resume to Ms. Ting Bell.
Columbia Univ., Computer Science Dept..
New York, NY 10027. Equal opportunity
employer. We are interested in receiving
applications from qualified women and
minorities.

HARVEY MUDD COLLEGE
Senior Position in Computer Science

Harvey Mudd College has re-opened its
search for a senior professor of computer
science to lead the department and help
design a curriculum for a major in computer
science. The successful candidate for this
position will be able to provide leadership
and direction both for the college's overall
computer science program and for the new
major. He or she must also desire the chal¬
lenge and opportunity to develop a program
which builds on the existing strengths of the
college in science and engineering. Qualifi¬
cations for the position include a doctorate in
computer science or in a related field with
computer science experience, demonstrated
commitment to excellence in teaching, a will¬
ingness and ability to participate in cur¬
riculum development, and significant profes¬
sional experience.

Harvey Mudd College, one of the nation's
most selective undergraduate colleges of
engineering and science, is a member of the
Claremont Colleges. The college is an equal
opportunity/affirmative action employer.
Please send resume and names of four refer¬
ences to: Nathaniel Davis

Dean of Faculty
Harvey Mudd College
Claremont, CA 91711

UNIVERSITY OF IDAHO
Department of Computer Science

The Department of Computer Science at
the University of Idaho invites applications
for a tenure-track faculty position at the assis¬
tant professor level, however, outstanding
applicants at higher levels will also be con¬
sidered. The Department of Computer Sci¬
ence is in the College of Engineering and one
of the college’s highest priorities is to build a
strong research program in computer sci¬
ence. While specialization in computing ar¬
chitectures, networks, and software engi¬
neering are preferred, outstanding candi¬
dates in all areas are encouraged to apply.

Qualifications for this position include an
earned Ph.D. in Computer Science or a
closely related field, teaching and research
ability, potential for establishing a strong
research program, and US citizenship or
lawfully authorized alien worker status. Suc¬
cessful candidates are expected to pursue an
active research program, perform graduate
and undergraduate teaching, and supervise
graduate students.

The department has 13 tenure-track facul¬
ty, approximately 250 undergraduate majors,
and 30 graduate students. BS and MS
degrees and currently offered with plans
underway for offering the Ph.D. degree in
computer science. The department is a com¬
ponent of the NASA Microelectronics Re¬
search Center at the University of Idaho.

The Computer Science department has
approximately 40 Unix work stations (HP,
Apollo, and DEC) which are networked and
have connections to Internet and Bitnet.
Numerous other college and university work
stations and computer laboratories are
available for faculty and student use.

Applicants should submit a curriculum
vitae and three letters of reference to John
Dickinson, Search Committee Chair, De¬
partment of Computer Science, University
of Idaho, Moscow, ID 83843 (emaiksearch
91@ted.cs.uidaho.edu). Applications will
be accepted until February 1, 1991 or until
suitable candidates are selected. The Univer¬
sity of Idaho is an EO/AA employer and
educational institution and specifically invites
applications from women and minorities.

RSA DATA SECURITY INC.

RSA Data Security Inc. invites applica¬
tions for a position in research and advanced
development. RSA Data Security is a small
company specializing in the integration of
cryptographic technology into commercial
systems. Applicants should have a Ph.D. in
Computer Science, Mathematics, or a close¬
ly related field.

Responsibilities of the position include
developing new crytographic protocols and
algorithms: evaluating cryptographic sys¬
tems; and maintaining an active research

Applicants should send a resume and the
names of three references to:

RSA Data Security
10 Twin Dolphin Drive

Redwood City, CA 94065
Telephone: (415) 595-8782

Electronic mail: burt@rsa.com
An Equal Opportunity/Affirmative Action

Employer.

126 COMPUTER

SOFTWARE ENGINEER

Software engineer sought to design and
maintain real time application softwares and
firmwares for robotic metal and plastic mark¬
ing machines, design new softwares and
modify existing softwares and write programs
utilizing MOTOROLA 6809 Assembly and C
languages; to modify and utilize a variety of
programs in D Base III PLUS and similar
programs; he/she will confer with other per¬
sonnel to obtain data on limitations and
capabilities of the machinery and systems
and provide consulting services to customers.
Salary: $29,000.00/yr. Send resume to
J. Gaston, Mo. Div. of Employment Securi¬
ty, 505 Washington, St. Louis, Missouri
63101. Refer to Job Order Number 405289.

MISSISSIPPI STATE UNIVERSITY
Electrical and Computer Engineering

and Engineering Research Center
(Search Extended)

Applications are invited for tenure track
positions in Electrical and Computer Engi¬
neering at Mississippi State University with a
joint appointment in the NSF Engineering
Research Center for Computational Field
Simulation. Positions require the Ph.D. The
technical areas of interest are in computer ar¬
chitecture with special emphasis in parallel
architecture, parallel computing software,
and rapid system prototyping including IC
design. They require demonstrated ability
with potential for attracting and conducting
research. Salaries are competitive and com¬
mensurate with degree and experience. Re¬
sponsibilities include both research and
teaching involving graduate and/or under¬
graduate instruction.

The Department of Electrical and Com¬
puter Engineering offers ABET accredited
undergraduate programs both in Electrical
and Computer Engineering and graduate
degrees through the doctorate. It has 32
faculty, 15 professional and administrative
support staff members and an enrollment of
approximately 780 undergraduate and 100
graduate students. The Department has an
excellent record of scholarly achievement
and has a major role in the MSU/NSF Engi¬
neering Research Center for Computational
Field Simulation.

This ERC combines research in solution
algorithms, grid generation, computer archi¬
tecture and computer graphics synergistically
to develop and apply high-performance com¬
putational simulation of field problems on
complex configurations. The Center main¬
tains a strong interaction with industry and
also stresses a cross-disciplinary educational
program in computational and computer
engineering at the undergraduate, graduate,
and professional levels. The research pro¬
gram is interdisciplinary, combining faculty,
staff and students from engineering, mathe¬
matics, and computer science. The ERC will
occupy a new 44,000 sq. ft. building (com¬
pleted late 1990) in the Mississippi Research
Technology Park adjacent to the University
campus.

Mississippi State University is a com¬
prehensive land grant institution and is
among the top 100 research-funded institu¬
tions in the United States as defined by the
National Science Foundation. The College

of Engineering is one of nine colleges/
schools in the University. The University
has over 13,000 students and 850 faculty
members.

The Department of Electrical and Com¬
puter Engineering is one of eight academic
departments in the College of Engineering.
Engineering with approximately 115 faculty
and 2,200 undergraduate and 200 graduate
students, has funded research expenditures
which exceed $10.0 million in FY90. The
new Mississippi Research and Technology
Park with associated industry is contributing
greatly to the research programs of the

Applications will be accepted until the
positions are filled. Interested persons should
submit a complete resume, including details
of relevant interests, expertise, and experi¬
ence, along with names and addresses of at
least three references to:

Dr. Jerry Rogers
Mississippi State University

P.O. Drawer EE
Mississippi State, MS 39762

(601) 325-3912 FAX (601) 325-2298
email: rogers@ee.msstate.edu

Mississippi State University is an Affirma¬
tive Action/Equal Opportunity Employer.

COMPUTER SYSTEMS ANALYST

M.S. in Computer & Information Science.
Designs, implements and analyzes clients’
business computer systems, including sys¬
tem capacities, networking, system layout,
installation, modification, testing, and
debugging, utilizing knowledge of manage¬
ment information system and computer sci¬
ence. Must be knowledgeable in Networks
and Data Communication, Microcomputer
Interfacing, and Structured System Design
(1 yr. hands-on experience or 3 hrs. course
work in each area). $26,716.00/yr., 40-hrs./
wk. Contact Texas Employment Commis¬
sion, Houston, Texas, or send resume to the
Texas Employment Commission, TEC Build¬
ing, Austin, Texas, 78778, J.O. #6122869.
Ad Paid by An Equal Employment Oppor¬
tunity Employer.

SAN JOSE STATE UNIVERSITY
Department of Mathematics and

Computer Science

A tenure track faculty position in com¬
puter science is available for candidates
holding a Ph.D. by August, 1991. The Ph.D.
in computer science is preferred, but a Ph.D.
in any of the mathematical sciences, together
with substantial teaching/research experi¬
ence in computer science, may also be ac¬
ceptable. Rank and salary commensurate
with experience.

The Department offers baccalaureate and
masters degree programs in computer sci¬
ence, applied and pure mathematics, sta¬
tistics, and mathematics education.

Applications will be reviewed beginning
January 2, 1991 and will receive full con¬
sideration. Send vita, three letters of refer¬
ence and transcripts to Dr. Veril Phillips,
Chairman, Department of Mathematics and
Computer Science, San Jose State Univer¬
sity, San Jose, CA 95192-103. EEO/AA
SCI 91-74.

VALPARAISO UNIVERSITY
Computer Engineering Faculty

Tenure Track Position

The Department of Electrical and Com¬
puter Engineering is seeking a qualified
faculty member, holding a Ph.D. in Com¬
puter Engineering or a closely-related field,
to teach in the area of Computer Engineer¬
ing. This ABET accredited undergraduate
program encompasses software and hard¬
ware with emphasis on architecture and
embedded system applications. The suc¬
cessful candidate will join a team of dedi¬
cated teachers preparing students for entry
level careers and graduate school admission
in all areas of electrical and computer engi¬
neering. Send resume to Dr. Rodney J. Bohl-
mann, Valparaiso University, Valparaiso, IN
46383. Valparaiso University, affiliated with
the Lutheran church, enrolls approximately
3500 students with 380 in engineering and is
located 50 miles southeast of Chicago.
AA/EOE. Applications from women and
minorities are encouraged.

TEXAS A&M UNIVERSITY
Department of Computer Science

Applications are invited for faculty posi¬
tions at the Assistant, Associate, or Full Pro¬
fessor level. Particular areas of interest
include software engineering, databases,
programming languages, computational sci¬
ences, and graphics, but outstanding can¬
didates from all areas will be considered.

Texas A&M provides superior instruc¬
tional and research facilities for its Computer
Science faculty and is committed to a major
expansion of its research and instructional
program in Computer Science. The Depart¬
ment is a branch of Texas A&M’s College of
Engineering which is one of the nation’s
largest. Currently the Department has a
roster of 28 full-time graduate faculty
members with a number of new positions
being added this year. In September of 1988
the Department initiated a program in Com¬
puter Science and Engineering to comple¬
ment its degree offerings in Computer
Science. In January of 1990 the Department
moved into a new building with 50,000
square feet of space. The Department's
equipment includes a 64 node NCUBE, a
2000 node MASPAR, Sequent Balance,
numerous SPARC4, Silicon Graphics, Sym¬
bolics, NeXT, and real time system work sta¬
tions as well as access to the University’s
Cray YMP2/116, IBM 3090/200E, Amdahl
5860, and more. The current annual exter¬
nal research funding in the Department is ap¬
proximately $2.5 million.

The program seeks excellence in research.
Applicants at the assistant professor level
should show substantial promise for research
and teaching. Applicants at the higher levels
should show a strong record of research
achievement. Ability in teaching graduates
and undergraduates is essential. Applicants
should have a doctoral degree or equivalent.
Applicants should submit a resume and three
references to Donald K. Friesen, Chairman,
Faculty Search Committee, Computer Sci¬
ence Department, Texas A&M University,
College Station, TX 77843-3112.

Texas A&M University is an equal oppor¬
tunity/affirmative action employer.

December 1990 127

WEST VIRGINIA UNIVERSITY

The Department of Statistics and Com¬
puter Science (S/CS) is seeking applications
for two tenure-track faculty positions as
Assistant Professor of Computer Science
beginning August 16, 1991. A Ph.D. in CS
or equivalent is required. Applicants with
research interest in AI, analysis of algo¬
rithms, databases, data communications,
operating systems, computer graphics, pro¬
gramming languages, parallel computing
and software engineering preferred. Duties
include undergraduate- and graduate-level
teaching; research and publication expected.

West Virginia University (WVU) is a com¬
prehensive land grant state university of ap¬
proximately 21,000 students. In addition to
WVU there are substantial federal research
facilities in the Morgantown area. Morgan¬
town is a college town located in scenic
northern West Virginia. Pittsburgh is about
IV2 hours by car; Washington, D.C. is about
a 3V2 hour drive. There is air service to both
Pittsburgh and Washington.

S/CS offers BS and MS degrees in both
statistics and computer science and a Ph.D.
degree in computer science. The Depart¬
ment has a strong working relationship with
Carnegie Mellon University (CMU) and is ac¬
tively involved in the Software Valley In¬
itiative. The CMU-WVU Research Corpora¬
tion was formed to enable CMU and WVU to
jointly pursue funding for research centers to
be located in the region.

Please send letter of application, resume,
names & addresses of three references, and
transcripts to Dr. Donald F. Butcher, Pro¬
fessor and Chairman, Statistics and Com¬
puter Science, 311 Knapp Hall, WVU,
Morgantown, WV 26506. Initial considera¬
tion will be given to applications received
prior to February 15, 1991. Applications will
be accepted until suitable applicants are
found. WVU is An equal opportunity /affir¬
mative action employer. Women and minor¬
ities are encouraged to apply.

OREGON STATE UNIVERSITY
Department of Computer Science

The Department of Computer Science in¬
vites applicants for tenure-track positions for
Assistant, Associate, and Full Professor¬
ships. Specialization in computer graphics or
software engineering is desirable, but all
qualified applicants will be considered. Ap¬
plicants should have completed or expect to
complete all requirements for a Ph.D. in
computer science or a closely related field
and should have demonstrated research and
teaching potential. Candidates for senior
positions should have established research
reputations. Review of applications will begin
November 1, 1990, and will continue until
the positions are filled. Please send vita,
statement of research interests and plans,
and three letters of reference to: Walter G.
Rudd, Chairman, Department of Computer
Science, Oregon State University, Corvallis,
OR 97331.

Oregon State University is an equal op¬
portunity affirmative action employer and
complies with Section 504 of the Rehabilita¬
tion Act of 1973. OSU has a policy of being
responsive to the needs of dual-career
couples.

THE UNIVERSITY OF MICHIGAN
Department of Electrical Engineering

and Computer Science

The Department of Electrical Engineering
and Computer Science at The University of
Michigan invites applications for positions at
all levels in its Computer Science and Engi¬
neering Division.

Our emphasis is on the areas of operating
systems, distributed systems and networks,
software engineering, programming lan¬
guages, theoretical computer science, and
database systems. Exceptional candidates in
other areas of computer science and engi¬
neering will also be considered. All candi¬
dates who apply should have an interest in
teaching and a strong research orientation.

Send your resume and the names of at
least three references to Professor Bernard
A. Galler, Chair of the Faculty Search Com¬
mittee, CSE Division, EECS Department,
The University of Michigan, Ann Arbor, MI
48109-2122.

The University of Michigan is an Equal
Opportunity/Affirmative Action Employer.

PORTLAND STATE UNIVERSITY
Computer Science Department

Tektronix Professorship in
Software Engineering

The Tektronix Foundation has awarded
Portland State University a $360,000 grant
to upgrade its software engineering curric¬
ulum, establishing a new tenure-track faculty
position in software engineering, with signifi¬
cant ancillary support, This new position can
be at the junior or senior level. The new fac¬
ulty member will join Dick Hamlet, Warren
Harrison, Ralph London and Sergio Antoy
on our faculty, and local software engineers
such as Mayer Schwartz, to create a center
for software engineering at PSU.

We invite applications and/or nomina¬
tions for this position. Applicants must have
an earned doctorate. Responsibilities include
undergraduate and graduate teaching, de¬
velopment of sponsored research, and inter¬
action with local industry. The position is
available beginning Fall 1991.

Portland State University, one of the three
major universities in the Oregon State Sys¬
tem of Higher Education, is located in the
heart of Portland, Oregon. The campus is
downtown, near to parks, shopping, and the
theater district. Portland is a beautiful city
which offers a diversity of recreation within
easy driving distance—unequaled fishing
(salmon and steelhead within a mile of cam¬
pus), skiing and mountain climbing, the
scenic Oregon coast and unmatched state
campgrounds, to name a few.

PSU’s Computer Science Department is
located in the Portland Center for Advanced
Technology, which houses both the Elec¬
trical Engineering and Computer Science
departments, plus CAD/CAM, VLSI
design, computer vision and optical com¬
munications laboratories. The CS depart¬
ment operates a network of UNIX, AI,
parallel processing and graphics systems and
workstations.

Portland has a rapidly growing computer
and electronics industry including Tektronix,
Intel, Servio Logic, Sequent Computer Sys¬
tems, Mentor Graphics, and Oregon Soft¬

ware, permitting close industry-university in¬
teraction. The excellent research facilities
and faculty of the Oregon Graduate Institute
are only a few miles away.

Send applications, including a resume
and the addresses of three references, to:

Leonard Shapiro
Department of Computer Science
Portland State University
P.O. Box 751
Portland, OR 97207
Telephone: (503) 725-4036
len@cs.pdx.edu
Non-U.S. Residents must state their visa

status. Portland State University is an equal
opportunity/affirmative action employer.
Minorities, women, and members of other
protected groups are encouraged to apply.
Deadline February 15, 1991 or until the
position is filled.

SOFTWARE ENGINEER

Point-of-sale software company in
Cheney, WA seeks software engineer to
direct (1) design, development, and imple¬
mentation of communication software using
SFX and 3780 Bisync protocol on UNIX
workstations and PCs using C and (2) R&D
on UNIX workstation, including software to
interface to RF equipment and print UPC
barcodes. Must have M.S. in Computer
Science and 1 year experience in software
engineering, including UNIX, UNIX inter¬
nals, C, shell scripts, UNIX workstation
hardware, COBOL, DOS, and Assembler.
Must have proof of legal authority to work
in the United States. Salary $34,800. 40
hrs/wk; 8 a.m. - 5 p.m. Submit resume by
December 31, 1990 to: Employment Security
Dept., ES Division, Job #235107-D, Olym¬
pia, WA 98504.

FROSTBURG STATE UNIVERSITY
Department of Computer Science

Full-time, tenure track, Assistant/Associ¬
ate Professor position available Fall 1991,
SUBJECT TO FUNDING AND/OR AP¬
PROVAL TO HIRE. Teach undergraduate
Computer Science and Computer Engineer¬
ing or Computer Information Systems
courses. REQUIRED: Master’s degree in
Computer Science, Information Science or
related field. Ph.D. in Computer Science or
related field preferred. Experience in Com¬
puter Engineering or Information Systems
curricula development preferred. Successful
candidate should have desire and ability to
teach wide range of undergraduate Com¬
puter Science and Computer Engineering,
or Computer Information Systems courses,
as well as introductory level courses. Rank
and salary dependent upon qualifications
and experience. Position offers benefits
package afforded University of Maryland
System employees. Telephone inquiries to:
Dr. Horton H. Tracy, Chair, 301-689-4361.
Submit letter of interest, resume, transcripts
and at least three letters of recommendation,
not later than March 15, 1991, directly to:
Mr. C. Douglas Schmidt, Director of Person¬
nel Services, Frostburg State University,
Frostburg, MD 21532. AA/EOE.

128 COMPUTER

NEW MEXICO STATE UNIVERSITY
Computer Science Department

We invite applications for tenure-track
Assistant Professorships and visiting posi¬
tions beginning Fall Semester 1991. Appli¬
cations from all areas of Computer Science
are welcome. Qualifications include a Ph.D.
in Computer Science or closely related
discipline and evidence of strength in
teaching and research.

Degrees at BS, MS and Ph.D. levels are
offered with 25Q undergraduate and 50
graduate students currently enrolled. The
department collaborates with the Computing
Research Laboratory (CRL), an indepen¬
dent research center at NMSU. This inter¬
action encourages research grant proposals,
stimulates development of new research
ideas and provides training for students in
advanced computing. Departmental facilities
include a network of some 30 SUN work¬
stations, a 20 processor Sequent and access
(through CRL and the Computer Center) to
parallel machines from Thinking Machines,
Floating Point Systems, Intel and IBM.

Las Cruces is situated in friendly southern
New Mexico and has a metropolitan popula¬
tion of 90,000. The climate is totally agree¬
able; the campus is mountainously scenic.
To apply, please send a resume and the
names and addresses of three references to
Dr. Juris Reinfelds, Head, Department of
Computer Science, Box 30001, Dept. 3CU,
New Mexico State University, Las Cruces,
NM 88003. Ph. (505) 646-3724, e-mail
juris@nmsu.edu. Inquiries regarding this re-
advertisement may also be addressed to Dr.
Roger Hartley, (505) 646-1218, e-mail rth@
nmsu.edu. Applications will be welcomed
until February 15, 1991.

THE UNIVERSITY OF TENNESSEE
Department of Computer Science
Knoxville, Tennessee 37996-1301

The Department of Computer Science in¬
vites applications for tenure-track positions at
the rank of Professor beginning Spring 1991.
A strong research record in the areas of
scientific computing, pattern and image
analysis, compilers or operating systems is
sought but all major fields in computer
science may be considered. Experience
directing doctoral students is especially im¬
portant. Tenure-track positions for Associate
and Assistant Professors are also open. Ap¬
plicants for Associate Professor should have
a strong research record, preferably in the
above-named areas; experience directing
doctoral students is desirable. Applicants for
Assistant Professor should have a strong in¬
terest in research, preferably in the above-
named areas. Applicants for all positions
should have a doctoral degree in computer
science or a related area.

Departmental SUN, IBM and DEC work¬
stations abound for students and faculty and
are fully networked. The department and
the Mathematical Sciences Section of the
Oak Ridge National Laboratory jointly
operate the Advanced Computing Labora¬
tory which includes fully networked Intel
iPSC/860, 128 processors; iPSC/2, 64
processors; two Sequent Balances and a Se¬
quent Symmetry; a Stardent Titan with four
processors; Cogent; N-Cube; and various

file servers. In addition, the department is
part of the National Science Foundation
Science and Technology center for Research
in Parallel Computing. The University
operates an IBM 3090 and a large VAX
cluster.

Please respond to straight@utkvx.utk.edu.
The mailing address is Department of Com¬
puter Science, 107 Ayres Hall, The Univer¬
sity of Tennessee, Knoxville TN 37996-1301.

The University of Tennessee is an EEO/
AA/TITLE IX/SECTION 504 employer.

EASTERN OREGON STATE COLLEGE
Computer Science Faculty

A nine-month, tenure-track appointment
in Computer Science at the assistant or asso¬
ciate professor level, beginning September
16, 1991. Rank and salary will be commen¬
surate with academic preparation and ex¬
perience. The successful candidate will be
committed to teaching a wide range of under¬
graduate courses in computer science. An
enthusiastic research involvement within the
discipline is expected in an area appropriate
to a college environment. A Ph.D. in com¬
puter science or closely related area is ex¬
pected, although persons who are nearing
completion of their Ph.D. will be considered.
We prefer someone with a background and
interest in operating systems, computing
theory, software development, and data¬
base management. Ability to teach Pascal,
the C programming language, and UNIX,
are essential. Our facilities are excellent for
our size. We are in a new building with well-
designed laboratories emphasizing computer
engineering, robotics, parallel processing,
and computer graphics. EASTERN is located
in the mountains of northeastern Oregon,
with excellent opportunities for outdoor
recreation. Send letter of application, cv,
copies of publications, transcripts, and three
letters of recommendation to: Chair, Com¬
puter Science Search Committee, Badgley
Hall of Science, Eastern Oregon State Col¬
lege, La Grande OR 97850-2899. Applica¬
tion deadline: February 1, 1991, or until the
position is filled. AA/EOE.

ITHACA COLLEGE
Department of Mathematics &

Computer Science

Ithaca College, Department of Mathe¬
matics & Computer Science invites applica¬
tions for two tenure-eligible positions in com¬
puter science. Rank: at least Assistant Pro¬
fessor. Appointment effective: August 15,
1991. Duties include teaching a wide variety
of courses in computer science. Ph.D. in
computer science preferred; candidates with
a Ph.D. in a closely related field and active
ABDs with a completion by August 1992 will
be considered. One position may require
teaching courses in computer information
science.

Submit letter of application, curriculum
vita, and three letters of reference, at least
one addressing teaching, to Dr. Stan Seltzer,
Assistant Chair, Department of Mathematics
& Computer Science, Ithaca College, Ithaca,
New York 14850. Screening begins Decem¬
ber 15, 1990. Ithaca College is an Affirma¬
tive Action/Equal Opportunity Employer.

BALL STATE UNIVERSITY
Muncie, Indiana

Announcement of Position Vacancy
Coordinator for Technology

Assessment and Faculty Development

Coordinates assessment of emerging
computer-related technologies for the uni¬
versity's academic mission and goals. Serves
as liaison between vendors, faculty, admini¬
strators, and Computing Services staff in the
development of pilot projects and workshops
involving advanced technologies; coor¬
dinates efforts within Computing Services
and with the academic community to develop
appropriate procedures for the assessment
and absorption of new technologies in teach¬
ing, research, and administration. Minimum
Qualifications: Masters degree or equivalent
in computer science or related field, at least
one year of development experience with
micro and mainframe applications; at least
three years experience with computer con¬
sulting in a college or university environ¬
ment. Preferred Qualifications: Ph.D. or
equivalent in computer science or related
field, at least three years teaching experience
in higher education. Send letter of applica¬
tion, vita, transcripts, and three letters of
references to:

Dennis Kramer
University Computing Services
Ball State University
Muncie, IN 47306
Review of applications will begin immedi¬

ately and continue until the position is filled.
Ball State University Practices Equal Op¬

portunity in Education and Employment.

BOISE STATE UNIVERSITY

HEWLETT PACKARD

Boise State University, in cooperation
with Hewlett-Packard, invites applicants for
a tenure-track position in the Department of
Mathematics for the fall of 1991. Applicants
should have a Ph.D. in computer science or
a related field with preference given to can¬
didates with expertise in software engineer¬
ing, artificial intelligence, or database sys¬
tems. Industry experience is beneficial. Re¬
sponsibilities will include teaching, research,
and service split between the University and
Hewlett-Packard’s Boise site. Salary will be
commensurate with rank and qualifications.

Boise State University is located in Boise,
Idaho which is the state’s largest city and is
the site of many technology-based corpora¬
tions. In the September issue of Money
magazine, Boise was ranked 37th out of 300
of the best U.S. cities in which to live. The
city is the political, economic, and cultural
hub of Idaho. The person selected for this
position can expect to find world-class out¬
door recreational opportunities, an extra¬
ordinary quality of life, and a highly collegial
faculty with balanced teaching and research
interests.

A letter of application, a vita, three letters
of reference, and graduate transcripts are re¬
quired. Contact Dr. Phillip Eastman, Com¬
puter Science Search Committee Chair,
College of Arts and Sciences, Boise State
University, Boise, Idaho 83725. Screening
will begin on January 15, 1991. BSU & HP
are EEO/AA employers.

December 1990 129

UNIVERSITY OF MASSACHUSETTS
AMHERST

Faculty and Research Scientist
Positions

The Department of Computer and Infor¬
mation Science invites applications for
tenure-track faculty positions and nontenure-
track research scientist positions at all levels
in all areas of computer science. Applicants
should have a Ph.D. in computer science or
related area and should show evidence of
exceptional research promise. Senior level
candidates should have a record of distin¬
guished research. Salary is commensurate
with education and experience. Our Depart¬
ment has grown substantially over the past
five years and currently has 29 full-time
faculty, 12 research scientists, and 200
graduate students. Continued growth is ex¬
pected over the next five years. We have
ongoing research projects in robotics, vision,
natural language processing, expert systems,
distributed processing, database systems, in¬
formation retrieval, real-time systems, soft¬
ware development, programming languages,
computer networks, office automation, in¬
telligent user interfaces, parallel computa¬
tion, and computer architecture. The Depart¬
ment’s NSF CER/CII award was recently
renewed for a five-year program in robotics,
computer vision and real-time computing.
We also have a five-year DoD/URI Center
of Excellence in Artificial Intelligence. To
support our research, we have an extensive
research computing facility, including over
200 Sun, VaxStation, DecStation and TI Ex¬
plorer workstations, numerous servers, two
Sequent Balance multiprocessors, a 4096-
node Connection Machine, a variety of
graphics devices, both Salisbury and
Utah/MIT robotic hands, a Denning mobile
robot and real-time testbed. Send vita, along
with the names of four references to: Pro¬
fessor Allen Hanson, COINS Department,
Lederle Graduate Research Center, Univer¬
sity of Massachusetts, Amherst, MA 01003,
by April 1, 1991. An Affirmative Action/
Equal Opportunity Employer.

ARIZONA STATE UNIVERSITY
Computer Science

Computer Engineering

The Department of Computer Science
seeks outstanding faculty candidates for
research and teaching in computer science
and computer engineering. Applicants will
be required to have completed a Ph.D. in
computer science, computer engineering, or
a closely related field by the date of appoint¬
ment, and must show promise of excellence
in teaching and research. All positions are
tenure track, and candidates at all levels are
invited to apply.

The department offers undergraduate and
graduate programs through the Ph.D. The

impressive alliance of high-tech companies
(including Intel, Motorola, Bull-HN, Honey¬
well, DEC, Silicon Graphics, and AG Com¬
munications). The companies participating
in this Engineering Excellence program are
working with the University and the State to
build an outstanding faculty and facilities for
Computer Science and Computer Engineer¬

ing at ASU. In 1992 the department will move
into new facilities now under construction.

Faculty engineering workstations are net¬
worked locally to the Engineering Com¬
puting Service VAX, IBM, Convex, Harris,
and Bull-HN mainframes, through the cam¬
pus broadband network to the university
Cray XMP/ 18se and IBM 3090/500E super¬
computers, and externally via Internet. A
major part of freshman/sophomore instruc¬
tion is hosted on Macintosh’s, and PC/AT
systems; all graphics laboratories are
equipped with Silicon Graphics Iris 3130's;
wide access is available to DEC-stations and
Sun workstations. The research laboratories
include Stardent, SGI, Xerox, and Symbolics
workstations.

Please send a curriculum vitae, a selection
of most important publications, and the
names of three references to:

Dr. Ben M. Huey,
Faculty Search Committee

Department of Computer Science
Arizona State University

Tempe, Arizona 85287-5406
Internet: huey@asuvax.asu.edu

Deadline: January 31, 1991 and the last
day of each month thereafter until filled.
ASU is an EO/AA employer and encourages
applications from women and minorities.

DEPAUL UNIVERSITY
CHICAGO, ILLINOIS

Announcement of Positions in
Computer Science

DePaul University invites applications for
several tenure-track positions in computer
science at all levels. The starting date is Sep¬
tember, 1991. Any area of specialization will
be considered; however persons in telecom¬
munications and information systems will be
given special consideration. Any applicant
should hold a Ph. D. in computer science or a
related field, or be a candidate for such a
degree. Duties include a six-hour teaching
load, advising, and research. Tenure details
and salary are negotiable. Benefits include
T1AA and standard health insurance. U.S.
citizenship is not required.

The Department, which offers bachelor’s,
master’s, and doctoral degrees, has over 500
undergraduate majors and over 800 gradu¬
ate students. Facilities include a VAX
6000/410, a VAX 11/750, an IBM 4381, a
Harris HCX-9, an AT&T 3B15, and a Harris
800. Each faculty office is provided with a
high performance workstation connected to
the Department’s ethernet. In addition, the
Department’s Artificial Intelligence Labora¬
tory is equipped with four Hewlett-Packard
AI workstations, two Symbolics 3640s and a
Symbolics 3670. The Department’s Com¬
puter Vision and Graphics Laboratory is
equipped with an AT&T 3B2-1000, eight
AT&T 6386 WGS Model E workstations, 15
AT&T 630 multi-tasking graphics terminals,
two frame grabbers, and a dedicated vision
processor. There are also numerous PC
laboratories. Faculty interests include tele¬
communications, information systems, arti¬
ficial intelligence, computer vision, neural
computing, natural languages, applied
statistics, applied graph theory, computer
graphics, computer security, compiler

design, semantics of programming lan¬
guages, and computer architecture.

Applications will be received until posi¬
tions are filled. To apply, send a resume and
at least three letters of reference to Helmut
Epp, Chairman, Department of Computer
Science and Information Systems, DePaul
University, 243 S. Wabash, Chicago, IL
60604.

DePaul University is an equal opportunity
employer.

SENIOR
SOFTWARE DESIGN ENGINEER

Senior Software Design Engineer needed
to conduct high level design and research for
advanced signalling technology including
ISDN and CCS7. Design, implement and
test software. Analyze data to determine
feasibility of product proposal. Confer with
research personnel to clarify or resolve prob¬
lems and develop design. Plan and develop
experimental test programs. Analyze data
and reports to determine if design meets
functional and performance specifications.
Evaluate engineering test results for possible
application to development of product. Re¬
quires a Bachelor’s degree in Computer Sci¬
ence or its’ equivalent and 4 years experi¬
ence in job offered or 4 years directly related
digital telecom signal design experience. Or
will consider a Master's degree in Computer
Science and 2 years of directly related tele¬
communications signalling design experi¬
ence. 40 hour work week. $45,300 per year.
Apply at the Texas Employment Commis¬
sion, Richardson, Texas, or send resume to
the Texas Employment Commission, TEC
Building, Austin, Texas 78778, Job Order
#5515178. Ad Paid By An Equal Employ¬
ment Opportunity Employer.

McGILL UNIVERSITY
Computer Engineering

The establishment of a separate degree
program in Computer Engineering has
created a number of tenure-track faculty
openings in the Department of Electrical
Engineering at McGill University. Applica¬
tions are invited from individuals who are
dedicated to teaching at both the under¬
graduate and graduate level, and who have
outstanding research potential and demon¬
strated research achievements. Practical ex¬
perience in either Digital Systems or large
Software Systems is essential.

Candidates must have an earned Ph.D.
degree. Graduation from an accredited engi¬
neering school is desirable. Please send a
resume and a list of 3 references to Professor
Nicholas C. Rumin, Chairman, Department
of Electrical Engineering, McGill University,
3480 University St., Montreal, QU, Canada,
H3A 2A7.

In accordance with Canadian Immigration
requirements, this advertisement is directed
in the first instance to Canadian citizens and
Permanent residents of Canada. Applica¬
tions from others are welcomed, however,
consideration of such candidates must be
deferred until a Canadian search has been
completed.

130 COMPUTER

ANNUAL INDEX

Annual Index

Computer

Volume 23,1990

This index covers all technical items — papers, correspondence, reviews, etc. — that appeared
in this periodical during 1990, and items from previous years that were commented upon or corrected
in 1990.

The Author Index contains the primary entry for each item, listed under the first author’s name,
and cross-references from all coauthors. The Subject Index contains several entries for each item
under appropriate subject headings, and subject cross-references.

It is always necessary to refer to the primary entry in the Author Index for the exact title, coauthors,
and comments/corrections.

I f means to check the main author’s entry for subsequent corrections and comments.
+ means to check the main author’s entry for coauthors.

AUTHOR INDEX
A

Ackerman, Mark S., see Schmandt, Chris, C-M Aug 90 50-56
Agarwal, Anant, see Chaiken, David, C-M Jun 90 49-58
Akhavi, Mina. Review of ‘Neural Computing: Theory and Practice’

(Wasserman, P. D.; 1989); C-M Aug 90 124
Alley, Maureen. Review of ‘Principles of Computer-Aided Design:

Modeling Objects and Environments’ (Kalay, Y. E.; 1989); C-M Mar 90
133

Ancona, Massimo, Gabriella Dodero, Vittoria Gianuzzi, Andrea Clematis,
and Eduardo B. Fernandez. A system architecture for fault tolerance in
concurrent software; C-M Oct 90 23-32

Anderson, Thomas. Review of ‘Dependability of Resilient Computers’
(Anderson, T.; 1989); C-M Aug 90 126

Anderson, William L. Review of ‘Silicon Dreams: Information, Man, and
Machine’ (Lucky, R. W.; 1989); C-M May 90 124-125

Arlat, Jean, see Laprie, Jean-Claude, C-M Jul 90 39-51

B
Baldassarre, A. M. Review of ‘Computer Graphics’ (Hill, F. S., Jr.; 1990);

C-M Oct 90 116
Beounes, Christian, see Laprie, Jean-Claude, C-M Jul 90 39-51
Bergmark, Donna, see Pancake, Cherri M., C-M Dec 90 13-23
Berlack, H. Ronald. Standards-How not to write commercial standards;

C-M May 90 79-81
Berlin, Andrew, and Daniel Weise. Compiling scientific code using partial

evaluation; C-M Dec 90 25-37
Bhuyan, Laxmi N., see Das, Chita R., C-M Oct 90 7-19
Birss, Robert C. Review of ‘A Program Architecture for Improved

Maintainability in Software Engineering’ (Einbu, J.; 1989); C-M Mar
90 132

Bissell, Donald C. Review of ‘Upgrading and Repairing PCs’ (Mueller, S.;
1989); C-M Aug 90 125

Bissell, Donald C. Review of ‘Great Ideas in Computer Science: A Gentle
Introduction’ (Biermann, A. W.; 1990); C-M Dec 90 112

Black, David L. Scheduling support for concurrency and parallelism in the
Mach operating system; C-M May 90 35-43

December 1990 131

ANNUAL INDEX

Boyer, Vincent L. Review of ‘The Transfer of Cognitive Skill’ (Singley, M.
K., and Anderson, J. R.; 1989); C-M Jan 90 144

Boykin, Joseph, Guest Ed., and Susan J. LoVerso, Guest Ed. Introduction
to special issue on recent developments in operating systems; C-M May

Buckley, Fletcher J. Standards—A standard environment for software
production; C-M Jan 90 75-77

Buckley, Fletcher J. Standards—A standard for extremely low frequency
magnetic fields; C-M Apr 90 95-97

Buckley, Fletcher J. Standards—Establishing a standard metrics program;
C-M Jun 90 85-86

Butler, Ricky W„ see Ramanathan, Parameswaran, C-M Oct 90 33-42

c
Carlton, Michael, and Alvin Despain. Multiple-bus shared-memory system:

Aquarius project; C-M Jun 90 80-83
Carpenter, Robert J., see Mink, Alan, C-M Sep 90 63-75
Carvey, Philip P., see Rettberg, Randall D., C-M Apr 90 18-28, 30
Chaiken, David, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal.

Directory-based cache coherence in large-scale multiprocessors; C-M
Jun 90 49-58. Correction, Jul 90 13

Champine, George A., Daniel E. Geer Jr., and William N. Ruh. Project
Athena as a distributed computer system; C-M Sep 90 40-51

Chanson, Samuel T., see Liang, Luping, C-M Feb 90 56-66
Chean, Mengly, and Jose A. B. Fortes. A taxonomy of reconfiguration

techniques for fault-tolerant processor arrays; C-M Jan 90 55-69
Chen, Horng-Yuan, see Tsai, Jeffrey J. P, C-M Mar 90 11-23
Cheong, Hoichi, and Alexander V. Veidenbaum. Compiler-directed cache

management in multiprocessors; C-M Jun 90 39-47
Clematis, Andrea, see Ancona, Massimo, C-M Oct 90 23-32
Cohen, Michael, see Ludwig, Lester F., C-M Aug 90 66-72
Crosby, Martha E., and Jan Stelovsky. How do we read algorithms? Acase

study; C-M Jan 90 25-35
Crowther, William R., see Rettberg, Randall D., C-M Apr 90 18-28, 30
Czejdo, Bogdan, Ramez Elmasri, Marek Rusinkiewicz, and David W.

Embley. A graphical data manipulation language for an extended
entity-relationship model; C-M Mar 90 26-36

D
Dannenberg, Roger B„ see Myers, Brad A., C-M Nov 90 71-85
Darragh, John J., Ian H. Witten, and Mark L. James. The reactive keyboard:

Apredictive typing aid; C-M Nov 90 41-49
Das, Chita R., Jeffrey T. Kreulen, Matthew J. Thazhuthaveetil, and Laxmi

N. Bhuyan. Dependability modeling for multiprocessors; C-M Oct 90
7-19

Dasgupta, Subrata. A hierarchical taxonomic system for computer
architectures; C-M Mar 90 64-74
Comments by Schmidt, U., C-M Jun 90 6

Delagi, Bruce, see Thapar, Manu, C-M Jun 90 78-80
Despain, Alvin, see Carlton, Michael, C-M Jun 90 80-83
Dodero, Gabriella, see Ancona, Massimo, C-M Oct 90 23-32
Driscoll, Brian. Review of ‘The Reliability of Expert Systems’ (Hollnagel,

E.; 1989); C-M May 90 126
Drissel, William E. The open channel—The laws of statistics; C-M May 90

128
Dubois, Michel, see Thakkar, Shreekant, C-M Jun 90 71-74
Dubois, Michel, Guest Ed., and Shreekant Thakkar, Guest Ed. Introduction

to special issue on cache architectures in tightly coupled
multiprocessors; C-M Jun 90 9-11

Duncan, Ralph. A survey of parallel computer architectures; C-M Feb 90
5-16

Dunlavey, Mike. Comments, with reply, on ‘Education of computing
professionals’ by D. L. Pamas; C-M Apr 90 8 (Original paper, Jan 90

Elmasri, Ramez, see Czejdo, Bogdan, C-M Mar 90 26-36
Emami, Kamyar, see Kamel, Ragui, C-M Aug 90 73-80
Embley, David W., see Czejdo, Bogdan, C-M Mar 90 26-36
Etlinger, Henry A. Review of ‘Fundamentals of Database Systems’

(Elmasri, R. and Navathe, S. B.; 1989); C-M Feb 90 118-119

F
Facelli, Julio C. Review of ‘Implementation of Small Computer Systems:

Case Studies of Applications’ (Whiddet, R. J.); C-M May 90 126
Fang, Kwang-Ya, see Tsai, Jeffrey J. P., C-M Mar 90 11-23
Feitelson, Dror G., and Larry Rudolph. Distributed hierarchical control for

parallel processing; C-M May 90 65-77
Fendrich, John W. Review of ‘Error-correcting Coding Theory’ (Rhee, M

Y.; 1989); C-M Feb 90 118
Fernandez, Eduardo B„ see Ancona, Massimo, C-M Oct 90 23-32
Fields, Craig, see Chaiken, David, C-M Jun 90 49-58
Foo, Simon Y., and Yoshiyasu Takefuji. Databases and cell-selection

algorithms for VLSI cell libraries; C-M Feb 90 18-30
Ford, Ray. Comments, with reply, on ‘A noninvasive architecture to monitor

real-time distributed systems,’ by J. Tsai et al.; C-M Jul 90 12-13
(Original paper, Mar 90 11-23)

Fortes, Jose A. B„ see Chean, Mengly, C-M Jan 90 55-69
Franklin, Manoj, and Kewal K. Saluja. Built-in self-testing of

random-access memories; C-M Oct 90 45-56
Freundlich, Yehudah. Knowledge bases and databases: Converging

technologies, diverging interests; C-M Nov 90 51-57
Frieder, Ophir. Multiprocessor algorithms for relational-database operators

on hypercube systems; C-M Nov 90 13-28
Fu, Caroline, see Salisbury, Mark W„ C-M Aug 90 59-65
Fujiwara, Eiji, and Dhiraj K. Pradhan. Error-control coding in computers;

C-M Jul 90 63-72

G
Garnett, James. Review of ‘Quality Engineering Using Robust Design’

(Phadke, M. S.; 1989); C-M Jun 90 126
Geer, Daniel E., Jr., see Champine, George A., C-M Sep 90 40-51
Geist, Robert, and Kishor S. Trivedi. Reliability estimation of

fault-tolerant systems: Tools and techniques; C-M Jul 90 52-61
Gianuzzi, Vittoria, see Ancona, Massimo, C-M Oct 90 23-32
Gibson, Ronald W. Standards—IEEE Project 802 standards efforts; C-M

Aug 90 84-89
Gigabit Testbed Initiative Management Ctte. Gigabit network testbeds;

C-M Sep 90 77-80
Giuse, Dario A., see Myers, Brad A., C-M Nov 90 71-85
Gjessing, Stein, see James, David V., C-M Jun 90 74-77
Goodenough, John B., see Sha, Lui, C-M Apr 90 53-62
Goodman, Gordon. Review of ‘Hypertext Hands-On’ (Shneiderman, B.,

and Kearsley, G.; 1989); C-M Jan 90 141
Gottlieb, Peter. Comments, with reply, on ‘Education of computing

professionals’ by D. L. Pamas; C-M Apr 90 9 (Original paper, Jan 90
17-22)

Graf, Daryl H., see Peacocke, Richard D„ C-M Aug 90 26-33
Graunke, Gary, and Shreekant Thakkar. Synchronization algorithms for

shared-memory multiprocessors; C-M Jun 90 60-69
Gries, David, and Dorothy Marsh. The 1988-89 Taulbee survey report; C-M

Oct 90 65-71
Gross, Robert M. Review of ‘Computer Viruses, Worms, Data Diddlers,

Killer Programs, and Other Threats to Your System’ (McAfee, J„ and
Haynes, C.; 1989); C-M Jan 90 142-143

Guinier, Daniel. Review of ‘Building a Secure Computer System’ (Gasser,
M.; 1988); C-M Nov 90 132

E
Eckert, Robert, see Kamel, Ragui, C-M Aug 90 73-80

132

H
Ha, Michael. Review of ‘Graphics Design and Animation on the IBM

Microcomputers’ (Sanchez, J.; 1990); C-M Jun 90 126

;

COMPUTER

Hancock, Sarah. Comments, with reply, on 'Education of computing
professionals’ by D. L. Pamas; C-M Apr 90 8 (Original paper, Jan 90
17-22)

Harkey, John E. Review of ‘Project Universe: An Experiment in
High-Speed Computer Networking’ (Burren, J. W., and Cooper, C. S.;
1989); C-M Apr 90 141

Hendrickson, Joseph H., see Salisbury, Mark W., C-M Aug 90 59-65
Hindus, Debby, see Schmandt, Chris, C-M Aug 90 50-56
Hollins, Jack. Review of ‘VLSI Handbook: Silicon, Gallium Arsenide, and

Superconductor Circuits’ (Di Giacomo, J., Ed.; 1989); C-M Mar 90
133-134

Horch, John W. Review of ‘Software Quality Concepts and Plans’ (Dunn,
R.H.; 1990); C-M Oct 90 118

Horstmann, Cay S. Review of ‘Using C++’ (Eckel, B.; 1989); C-M Jul 90
133

Horstmann, Cay S. Review of ‘C++ for C Programmers’ (Pohl, I.; 1989);
C-M Jul 90 133

Hutchinson, Norman, see Peterson, Larry, C-M May 90 23-33

I
IEEE Computer Society Tech. Ctte. on Operating Systems and Operating

Environments, and Jim Isaak, Chmn. Standards—Applications
environment profiles: A significant tool for simplifying and
coordinating standard efforts; C-M Feb 90 69-70

Irakliotis, Leonidas J. Review of ‘Computer Modeling for Discrete
Simulation’ (Pidd, M„ Ed.; 1989); C-M Aug 90 124

Isaak, Jim, Standards—The history of Posix: A study in the standards
process; C-M Jul 90 89-92

Isaak, Jim, Chmn., see IEEE Computer Society Tech. Ctte. on Operating
Systems and Operating Environments, C-M Feb 90 69-70

James, David V., Anthony T. Laundrie, Stein Gjessing, and Gurindar S. Sohi.
Distributed-directory scheme: Scalable coherent interface; C-M Jun 90
74-77

James, Mark L., see Darragh, John J., C-M Nov 90 41-49
Jasen, Christopher J. Review of ‘Practical LANs Analyzed’ (Kauffels,

F.-J.; 1989); C-M Jul 90 134-135
Jenkins, John. Review of ‘Logic-based Knowledge Representation’

(Jackson, P„ et. al.; 1989); C-M Feb 90 117
Johnson, James L. Review of ‘Neural and Concurrent Real-Time Systems:

The Sixth Generation’ (Soucek, B.; 1989); C-M Sep 90 141
Jude, Michael R. In defense of DOS (Ltr.); C-M Mar 90 4

K
Kamel, Ragui, Kamyar Emami, and Robert Eckert. PX: Supporting voice

in workstations; C-M Aug 90 73-80
Kamel, Ragui, Guest Ed. Introduction to special issue on voice in

computing; C-M Aug 90 8-9
Kanopoulos, Nick, see Markas, Tassos, C-M Jan 90 40-52
Kanoun, Karama, see Laprie, Jean-Claude, C-M Jul 90 39-51
Kemp, Alasdair. Standards-Standards for information technology in the

UK: The role of the Institution of Electrical Engineers; C-M Dec 90
76-78

Koren, Israel, and Adit D. Singh. Fault tolerance in VLSI circuits; C-M Jul
90 73-83

Kosbie, David S., see Myers, Brad A., C-M Nov 90 71-85
Kreulen, Jeffrey T., see Das, Chita R„ C-M Oct 90 7-19
Kurihara, Kiyoshi, see Chaiken, David, C-M Jun 90 49-58

L
Lammers, Terence L., see Salisbury, Mark W., C-M Aug 90 59-65
Lang, Tomas, see Moreno, Jaime H„ C-M Apr 90 32-51
Laprie, Jean-Claude, Jean Arlat, Christian Beounes, and Karama Kanoun.

Definition and analysis of hardware- and software-fault-tolerant
architectures; C-M Jul 90 39-51

Laundrie, Anthony T., see Thakkar, Shreekant, C-M Jun 90 71-74
Laundrie, Anthony T., see James, David V., C-M Jun 90 74-77
Lauritsen, Marc. Review of ‘Elements of Computer Music’ (Moore, F. R.;

1990); C-M Oct 90 117
Lawson, Harold W. Philosophies for engineering computer-based systems;

C-M Dec 90 52-63
Leler, Wm. Linda meets Unix; C-M Feb 90 43-54
Lennig, Matthew. Putting speech recognition to work in the telephone

network; C-M Aug 90 35-41
Leonardis, Sante. Review of ‘Functional Programming: Practice and

Theory’ (MacLennan, B. J.; 1990); C-M Sep 90 140
Leung, K. S., and M. H. Wong. An expert-system shell using structured

knowledge: An object-oriented approach; C-M Mar 90 38-47
Liang, Luping, Samuel T. Chanson, and Gerald W. Neufeld. Process groups

and group communications: Classifications and requirements; C-M Feb
90 56-66

LoVerso, Susan J., Guest Ed., see Boykin, Joseph, Guest Ed., C-M May 90
5-6

Ludwig, Lester F., Natalio Pincever, and Michael Cohen. Extending the
notion of a window system to audio; C-M Aug 90 66-72

M
Manber, Udi. Chain reactions in networks; C-M Oct 90 57-63
Marchal, Philippe, see Myers, Brad A., C-M Nov 90 71-85
Markas, Tassos, Mark Royals, and Nick Kanopoulos. On distributed fault

simulation; C-M Jan 90 40-52
Marsh, Dorothy, see Gries, David, C-M Oct 90 65-71
Maunder, Colin. Keep IEEE standards international (Ltr.); C-M Mar 90 4
McClanahan, James B. Review of ‘Computers and Engineering

Management’ (Wheeler, T. F.; 1989); C-M Oct 90 118
McCluskey, E. J. Design techniques for testable embedded error checkers;

C-M Jul 90 84-88
McFarland, Michael C. Standards—Urgency of ethical standards

intensifies in computer community; C-M Mar 90 77-81
Comments by Newman, E., C-M Jun 90

McGonnigal, Grace. Comments, with reply, on ‘Education of computing
professionals’ by D. L. Pamas; C-M Apr 90 8 (Original paper, Jan 90
17-22)

McGowan, Marty. Review of ‘Systems Design in a Database Environment’
(Brathwaite, K. S.; 1989); C-M Mar 90 131

McLean, John. The specification and modeling of computer security; C-M
Jan 90 9-16

Mickish, Andrew, see Myers, Brad A., C-M Nov 90 71-85
Mink, Alan, Robert J. Carpenter, George G. Nacht, and John W. Roberts.

Multiprocessor performance-measurement instrumentation; C-M Sep
90 63-75

Mirsa, Sheo G. Review of ‘Mind Children: The Future of Robot and Human
Intelligence’ (Moravec, H.; 1988); C-M Dec 90 112-113

Moody, Scott A., see Salisbury, Mark W., C-M Aug 90 59-65
Mooney, James D. Strategies for supporting application portability; C-M

Nov 90 59-70
Moreno, Jaime H., and Tomas Lang. Matrix computations on systolic-type

meshes; C-M Apr 90 32-51
Morreale, Patricia A. Review of ‘Online Communications Software’

(Ashley, R. et al.; 1989); C-M Mar 90 131-132
Morreale, Patricia A. Review of ‘Quantitative Analysis of Computer

Systems’ (Leung, C. H. C.; 1988); C-M Jun 90 124
Mullender, Sape J., Guido van Rossum, Andrew S. Tanenbaum, Robbert

van Renesse, and Hans van Staveren. Amoeba: A distributed operating
system for the 1990s; C-M May 90 44-53

Muller, Robert J., see Wasserman, Anthony I., C-M Mar 90 50-63
Mullin, Albert A. Review of ‘Knowledge Systems Design’ (Debenham,

John K.; 1989); C-M Feb 90 119
Murphy, Michael G. Review of ‘The Illusion of Reality’ (Resnikoff, H. L.;

1989); C-M Feb 90 117
Murugesan, Singaravel, Guest Ed., see Singh, Adit D., Guest Ed., C-M Jul

90 15-17
Mutschler, David W. Review of ‘CASE: Concepts and Implementation’

(Towner, L. E.; 1989); C-M Apr 90 142
Myers, Brad A., Dario A. Giuse, Roger B. Dannenberg, Brad Vander

Zanden, David S. Kosbie, Edward Pervin, Andrew Mickish, and

December 1990 133

ANNUAL INDEX

Philippe Marchal. Garnet Comprehensive support for graphical, highly Rusinkiewicz, Marek, see Czejdo, Bogdan, C-M Mar 90 26-36
interactive user interfaces; C-M Nov 90 71-85

N
Nacht, George G., see Mink, Alan, C-M Sep 90 63-75
Nadler, Morton. Review of ‘Digital Image Processing and Computer Vision’

(Schalkoff, R. J.; 1989); C-M Nov 90 133-134
Nakatsu, Ryohei. Anser: An application of speech technology to the

Japanese banking industry; C-M Aug 90 43-48
Nelson, Victor P. Fault-tolerant computing: Fundamental concepts; C-M Jul

90 19-25
Neufeld, Gerald W., see Liang, Luping, C-M Feb 90 56-66
Newcomb, Randall C. Review of ‘Systems Engineering: Architecture and

Design’ (Beam, W. R.; 1990); C-M Jul 90 132
Newman, Edward. Comments, with reply, on ‘Urgency of ethical standards

intensifies in computer community’ (Standards), by M. C. McFarland;
C-M Jun 90 6 (Original paper, Mar 90 77-81)

o
O’Malley, Michael H. Text-to-speech conversion technology; C-M Aug 90

17-23
O’Malley, Sean, see Peterson, Larry, C-M May 90 23-33

P
Pancake, Cherri M., and Donna Bergmark. Are parallel languages

responsive to the needs of scientific programmers?; C-M Dec 90 13-23
Parnas, David Lorge. Education for computing professionals; C-M Jan 90

17-22
Comments by McGonnigal, G., Hancock, S., Dunlavey, M., Walker, B.,
and Gottlieb, P„ C-M Apr 90 8-9

Paroczai, Andrew J. Review of ‘Coordinating User Interfaces for
Consistency’ (Nielsen, J., Ed.; 1989); C-M Nov 90 131

Pasieka, George. Review of ‘OS/2 Database Manager: A Developer’s
Guide’ (Fosdick, H.; 1989); C-M Jul 90 132

Pavlidis, Theo, Jerome Swartz, and Ynjiun P. Wang. Fundamentals of bar
code information theory; C-M Apr 90 74-86

Peacocke, Richard D., and Daryl H. Graf. An introduction to speech and
speaker recognition; C-M Aug 90 26-33

Perez, Matt M., see Rosing, Wayne E., C-M Sep 90 82-84
Pervin, Edward, see Myers, Brad A., C-M Nov 90 71-85
Peterson, Larry, Norman Hutchinson, Sean O’Malley, and Herman Rao.

The x-kemel: A platform for accessing internet resources; C-M May 90
23-33

Pincever, Natalio, see Ludwig, Lester F., C-M Aug 90 66-72
Pircher, Peter A., see Wasserman, Anthony I., C-M Mar 90 50-63
Posse, Ken. Review of ‘Computer-Aided Circuit Analysis Using SPICE’

(Banzhaf, W.; 1989); C-M Apr 90 143
Pradhan, Dhiraj K., see Fujiwara, Eiji, C-M Jul 90 63-72

R
Radel, Jon. TeXpert opinion (Ltr.); C-M Mar 90 5
Ramanathan, Parameswaran, Kang G. Shin, and Ricky W. Butler.

Fault-tolerant clock synchronization in distributed systems; C-M Oct
90 33-42

Rao, Herman, see Peterson, Larry, C-M May 90 23-33
Rettberg, Randall D., William R. Crowther, Philip P. Carvey, and Raymond

S. Tomlinson. The Monarch parallel processor hardware design; C-M
Apr 90 18-28,30

Robert, Yves. Review of ‘The Design and Analysis of Parallel Algorithms’
(Akl, S. G.; 1989); C-M Nov 90 134

Roberts, John W., see Mink, Alan, C-M Sep 90 63-75
Rosing, Wayne E., and Matt M. Perez. Standards—The evolving

relationship between open standards and technology; C-M Sep 90 82-84
Royals, Mark, see Markas, Tassos, C-M Jan 90 40-52
Rudolph, Larry, see Feitelson, Dror G., C-M May 90 65-77
Ruh, William N., see Champine, George A., C-M Sep 90 40-51

s
Sabat, Sunil Kumar. Review of ‘Computer Architecture and Design’ (Van

De Goor, A. J.; 1989); C-M May 90 125
Salisbury, Mark W., Joseph H. Hendrickson, Terence L. Lammers, Caroline

Fu, and Scott A. Moody. Talk and draw: Bundling speech and graphics;
C-M Aug 90 59-65

Saluja, Kewal K., see Franklin, Manoj, C-M Oct 90 45-56
Sastry, Mark N. Review of ‘Intelligent Databases’ (Parsaye, K., etal.; 1989);

C-M Jan 90 143
Satyanarayanan, Mahadev. Scalable, secure, and highly available

distributed file access; C-M May 90 9-18, 20-21
Schachter, Lome H. Review of ‘Security Mechanisms for Computer

Networks’ (Muftic, S.; 1989); C-M Apr 90 140
Schmandt, Chris, Mark S. Ackerman, and Debby Hindus. Augmenting a

window system with speech input; C-M Aug 90 50-56
Schmidt, Ulrich. Comments, with reply on ‘A hierarchical taxonomic

system for computer architectures’ by S. Dasgupta; C-M Jun 90 6
(Original paper Mar 90 64-74)

Seacord, Robert C. Standards—User interface management systems and
application portability; C-M Oct 90 73-75

Sha, Lui, and John B. Goodenough. Real-time scheduling theory and Ada;
C-M Apr 90 53-62

Shin, Kang G., see Ramanathan, Parameswaran, C-M Oct 90 33-42
Shriver, Bruce D., Ed. A very special ‘thanks’ (Ed.-in-Chief’s message);

C-M Jan 90 4
Shriver, Bruce D., Ed. The benefits of quality refereeing (Edtl.); C-M Apr

90 10
Siewiorek, Daniel P. Fault tolerance in commercial computers; C-M Jul 90

26-37
Singh, Adit D., see Koren, Israel, C-M Jul 90 73-83
Singh, Adit D., Guest Ed., and Singaravel Murugesan, Guest Ed.

Introduction to special issue on fault-tolerant systems; C-M Jul 90 15-17
Sittig, Dean F. Review of ‘Digital Signal Processing Design’ (Bateman A.,

and Yates, W.; 1989); C-M Apr 90 141-142
Skillicorn, David B. Architecture-independent parallel computation; C-M

Dec 90 38-49
Smith, Alan Jay. The task of the referee; C-M Apr 90 65-71
Sohi, Gurindar S., see Thakkar, Shreekant, C-M Jun 90 71-74
Sohi, Gurindar S., see James, David V., C-M Jun 90 74-77
Spiller, Paolo. Review of ‘Measuring Software Design Quality’ (Card, D.

N. & Glass, R. L.; 1990); C-M Nov 90 132
Stasko, John T. Tango: A framework and system for algorithm animation;

C-M Sep 90 27-39
Stelovsky, Jan, see Crosby, Martha E., C-M Jan 90 25-35
Stenger, Allen. Review of ‘Modula-2 Programming: A First Course’ (Harter,

E. D.; 1990); C-M Dec 90 111
Stenstrom, Per. A survey of cache coherence schemes for multiprocessors;

C-M Jun 90 12-24
Stern, John P. Standards-An American’s view of the Japanese standards 4

system; C-M Nov 90 87-89
Strathmeyer, Carl R. Voice in computing: An overview of available

technologies; C-M Aug 90 10-15
Stratton, Robert. Review of 'Managing for Profit in the Semiconductor

Industry’ (Mclvor, R.; 1989); C-M Jul 90 134
Stumm, Michael, and Songnian Zhou. Algorithms implementing distributed

shared memory; C-M May 90 54-64
Swartz, Jerome, see Pavlidis, Theo, C-M Apr 90 74-86

T
Takefuji, Yoshiyasu, see Foo, Simon Y., C-M Feb 90 18-30
Tanenbaum, Andrew S., see Mullender, Sape J., C-M May 90 44-53
Tanner, Ralph. Review of ‘Applied Control of Manipulation Robots’

(Vukobratovic, M. and Stokic, D.; 1989); C-M Sep 90 140
Teller, Patricia J. Translation-lookaside buffer consistency; C-M Jun 90

26-36
Thakkar, Shreekant, see Graunke, Gaty, C-M Jun 90 60-69

134 COMPUTER

Thakkar, Shreekant, Michel Dubois, Anthony T. Laundrie, and Gurindar
S. Sohi. Scalable shared-memory multiprocessor architectures; C-M
Jun 90 71-74

Thakkar, Shreekant, Guest Ed., see Dubois, Michel, Guest Ed., C-M Jun
90 9-11

Thapar, Manu, and Bruce Delagi. Distributed-directory scheme: Stanford
distributed-directory protocol; C-M Jun 90 78-80

Thazhuthaveetil, Matthew J., see Das, Chita R., C-M Oct 90 7-19
Tomlinson, Raymond S., see Rettberg, Randall D., C-M Apr 90 18-28, 30
Tracz, Will. The Open Channel—Confessions of a used-program salesman:

The same old song; C-M Jan 90 72
Trivedi, Kishor S., see Geist, Robert, C-M Jul 90 52-61
Tsai, Jeffrey J. P., Kwang-Ya Fang, and Homg-Yuan Chen. A noninvasive

architecture to monitor real-time distributed systems; C-M Mar 90
11-23
Comments by Ford, R., C-M Jul 90 12-13

V
Vallabhaneni, Krishna. Review of ‘Data Exchange PC/MS DOS’ (Ross, S.

S.; 1989); C-M Oct 90 117
van Renesse, Robbert, see Mullender, Sape J., C-M May 90 44-53
van Rossum, Guido, see Mullender, Sape J., C-M May 90 44-53
van Staveren, Hans, see Mullender, Sape J., C-M May 90 44-53
Veidenbaum, Alexander V., see Cheong, Hoichi, C-M Jun 90 39-47
Veklerov, Eugene. Review of ‘Computer Systems Performance

Management and Capacity Planning’ (Cady J. and Howarth, B.; 1990);
C-M Sep 90 141-142

Vetter, Jeffrey S. Review of ‘Systems Architecture and Systems Design’
(Chorafas, D. N.; 1989); C-M Jun 90 125

w
Wahl, Dan. Review of ‘DB2 SQL: A Professional Programmer’s Guide’

(Martyn, T., and Hartley, T.; 1989); C-M Aug 90 125
Walker, Bruce. Comments, with reply, on ‘Education of computing

professionals’ by D. L. Pamas; C-M Apr 90 8-9 (Original paper, Jan 90
17-22)

Walters, Richard F. Design of a bitmapped multilingual workstation; C-M
Feb 90 33-41

Wang, Ynjiun P„ see Pavlidis, Theo, C-M Apr 90 74-86
Wasserman, Anthony I., Peter A. Pircher, and Robert J. Muller. The

object-oriented structured design notation for software design
representation; C-M Mar 90 50-63

Weicker, Reinhold P. An overview of common benchmarks; C-M Dec 90
65-75

Weise, Daniel, see Berlin, Andrew, C-M Dec 90 25-37
Weiss, Gerald, see Ziegler, Chaim, C-M Sep 90 52-61
Wing, Jeanette M. A specifier’s introduction to formal methods; C-M Sep

90 8,10-22, 24
Witten, Ian H., see Darragh, John J., C-M Nov 90 41-49
Wong, M. H., see Leung, K. S„ C-M Mar 90 38-47
Wood, Helen M., Comput. Soc. Pres. We must be doing something ring,

(Society President’s message); C-M Jan 90 4
Wood, Helen M., Comput. Soc. Pres. Let’s talk about a really big project

(Society President’s message); C-M Mar 90 9
Wood, Helen M., Comput. Soc. Pres. Meeting the technology challenge

(Society President’s message); C-M Aug 90 6
Wood, Helen M., Comput. Soc. Pres. Help wanted: What do members want

of their society? (Society President’s message); C-M Sep 90 4
Wood, Helen M., Comput. Soc. Pres. Why we should care about standards

(Society President’s message); C-M Nov 90 6-7
Wood, Helen M., Comput. Soc. Pres. The Future Looks Even Better (Society

President’s message); C-M Dec 90 6

Y
Yaung, Alan Tsu-I. Review of ‘Software Engineering Management’ (Sneed,

H. M.; 1989); C-M Sep 90 143

Yeung, Grace C. N. Review of ‘Strategic Information Planning
Methodologies, 2nd edn.’ (Martin, J., and Leben, J.; 1989); C-M Jan 90
142

z
Zalewski, Janusz. Review of ‘An Implementation Guide to Real-Time

Programming’ (Ripps, D. L.; 1989); C-M Jun 90 124-125
Zalewski, Janusz. Review of ‘Strategies for Real-Time Specification

(Hately, D. J. & Pribhai, I. A.; 1988); C-M Dec 90 113-114
Zanden, Brad Vander, see Myers, Brad A., C-M Nov 90 71-85
Zelkowitz, Marvin V. A functional correctness model of program

verification; C-M Nov 90 30-40
Zheng, Xiaojun. Review of ‘Object-Oriented Analysis’ (Coad, R, and

Yourdon, E.; 1990); C-M Aug 90 126
Zhou, Songnian, see Stumm, Michael, C-M May 90 54-64
Ziegler, Chaim, and Gerald Weiss. Multimedia conferencing on local area

networks; C-M Sep 90 52-61

SUBJECT INDEX

A
Access control; cf. Computer security
Ada

real-time scheduling theory and its implications for Ada. Sha, Lui, + ,
C-M Apr 90 53-62

Aids for the handicapped; cf. Handicapped persons
Animation

book review; Graphics Design and Animation on the IBM
Microcomputers (Sanchez, J.; 1990). Ha, Michael, C-M Jun 90 126

case study in reading Pascal algorithms and graphical representations of
its behavior. Crosby, Martha E., + , C-M Jan 90 25-35

Tango, framework and system for algorithm animation. Stasko, John T.,
C-M Sep 90 27-39

Application-specific integrated circuits
databases and cell-selection algorithms for VLSI cell libraries. Foo,

Simon Y„ + , C-M Feb 90 18-30
Array processing

survey of parallel computer architectures. Duncan, Ralph, C-M Feb 90
5-16

taxonomy of reconfiguration techniques for fault-tolerant processor
arrays. Chean, Mengly, + , C-M Jan 90 55-69

Array processing; cf. Systolic arrays
Artificial intelligence

book review; Mind Children: The Future of Robot and Human
Intelligence (Moravec.H.; 1988). Mirsa,SheoG„ C-M Dec 90 112-113

Artificial intelligence; cf. Intelligent systems
Audio systems

extending notion of window system to audio. Ludwig, Lester F., + , C-M
Aug 90 66-72

Awards
1989 Grace Murray Hopper Award to Barry Boehm. C-M Apr 90 102
1990 Eckert-Mauchly Award given by IEEE Computer S ociety and ACM

to Kenneth Batcher. C-M Sep 90 91
award winners honored at Compcon Spring 90. C-M May 90 83-85
Gordon Bell Prize winners announced at Compcon Spring 90. C-M May

90 85
IEEE Computer Society awards to members for special achievements and

service. C-M Aug 90 91

December 1990 135

B
Bar code reading

fundamentals of bar code information theory; encoding problems and
solutions. Pavlidis, Theo, +, C-M Apr 90 74-86

Biological radiation effects, electromagnetic
debate over impact of ELF magnetic fields (Standards). Buckley, Fletcher

J., C-M Apr 90 95-97
Book reviews

A Program Architecture for Improved Maintainability in Software
Engineering (Einbu, J.; 1989). Birss, Robert C., C-M Mar 90 132

An Implementation Guide to Real-Time Programming (Ripps, D. L.;
1989). Zalewski, Janusz, C-M Jun 90 124-125

Applied Control of Manipulation Robots (Vukobratovic, M. and Stokic,
D.; 1989). Tanner, Ralph, C-M Sep 90 140

Building a Secure Computer System (Gasser, M.; 1988). Guinier, Daniel,
C-M Nov 90 132

C++ for C Programmers (Pohl, I.; 1989). Horstmann, Cay S., C-M Jul 90
133

CASE: Concepts and Implementation (Towner, L. E.; 1989). Mutschler,
David W., C-M Apr 90 142

Computer-Aided Circuit Analysis Using SPICE (Banzhaf, W.; 1989).
Posse, Ken, C-M Apr 90 143

Computer Architecture and Design (Van De Goor, A. J.; 1989). Sabat,
Sunil Kumar, C-M May 90 125

Computer Graphics (Hill, F. S„ Jr.; 1990). Baldassarre, A. M., C-M Oct
90116

Computer Modeling for Discrete Simulation (Pidd, M., Ed.; 1989).
Iraldiotis, Leonidas J., C-M Aug 90 124

Computer Systems Performance Management and Capacity Planning
(Cady J. and Howarth, B.; 1990). Veklerov, Eugene, C-M Sep 90
141-142

Computer Viruses, Worms, Data Diddlers, Killer Programs, and Other
Threats to Your System (McAfee, J., and Haynes, C.; 1989). Gross,
Robert M., C-M Jan 90 142-143

Computers and Engineering Management (Wheeler, T. F.; 1989).
McClanahan, James B., C-M Oct 90 118

Coordinating User Interfaces for Consistency (Nielsen, J., Ed.; 1989).
Paroczai, Andrew J., C-M Nov 90 131

Data Exchange PC/MS DOS (Ross, S. S.; 1989). Vallabhaneni, Krishna,
C-M Oct 90 117

DB2 SQL: A Professional Programmer’s Guide (Martyn, T., and Hartley,
T.; 1989). Wahl, Dan, C-M Aug 90 125

Dependability of Resilient Computers (Anderson, T.; 1989). Anderson,
Thomas, C-M Aug 90 126

Digital Image Processing and Computer Vision (Schalkoff, R. J.; 1989).
Nadler, Morton, C-M Nov 90 133-134

Digital Signal Processing Design (Bateman A., and Yates, W.; 1989).
Sittig, Dean F„ C-M Apr 90 141-142

Elements of Computer Music (Moore, F. R.; 1990). Lauritsen, Marc, C-M
Oct 90 117

Error-coiTecting Coding Theory (Rhee, M. Y.; 1989). Fendrich, John W.,
C-M Feb 90 118

Functional Programming: Practice and Theory (MacLennan, B. J.; 1990).
Leonardis, Sante, C-M Sep 90 140

Fundamentals of Database Systems (Elmasri, R. and Navathe, S. B.;
1989). Etlinger, Henry A., C-M Feb 90 118-119

Graphics Design and Animation on the IBM Microcomputers (Sanchez,
J.; 1990). Ha, Michael, C-M Jun 90 126

Great Ideas in Computer Science: A Gentle Introduction (Biermann, A.
W.; 1990). Bissell, Donald C„ C-M Dec 90 112

Hypertext Hands-On (Shneiderman, B., and Kearsley, G.; 1989).
Goodman, Gordon, C-M Jan 90 141

Illusion of Reality, (Resnikoff, H. L.; 1989). Murphy, Michael G., C-M
Feb 90 117

Implementation of Small Computer Systems: Case Studies of
Applications (Whiddet, R. J.). Facelli, Julio C., C-M May 90 126

Intelligent Databases (Parsaye, K., et al.; 1989). Sastry, Mark N., C-M
Jan 90 143

Knowledge Systems Design (Debenham, John K.; 1989). Mullin, Albert
A., C-M Feb 90 119

Logic-based Knowledge Representation (Jackson, P., et. al.; 1989).
Jenkins, John, C-M Feb 90 117

Managing for Profit in the Semiconductor Industry (Mclvor, R.; 1989).
Stratton, Robert, C-M Jul 90 134

Measuring Software Design Quality (Card, D. N. & Glass, R. L.; 1990).
Spiller, Paolo, C-M Nov 90 132

Mind Children: The Future of Robot and Human Intelligence (Moravec,
H.; 1988). Mirsa, Sheo G., C-M Dec 90 112-113

Modula-2 Programming: A First Course (Harter, E. D.; 1990). Stenger,
Allen, C-M Dec 90 111

Neural and Concurrent Real-Time Systems: The Sixth Generation
(Soucek, B.; 1989). Johnson, James L., C-M Sep 90 141

Neural Computing: Theory and Practice (Wasserman, P. D.; 1989).
Akhavi, Mina, C-M Aug 90 124

Object-Oriented Analysis (Coad, P, and Yourdon, E.; 1990). Zheng,
Xiaojun, C-M Aug 90 126

Online Communications Software (Ashley, R. et al.; 1989). Morreale,
Patricia A., C-M Mar 90 131-132

OS/2 Database Manager: A Developer’s Guide (Fosdick, H.; 1989).
Pasieka, George, C-M Jul 90 132

Practical LANs Analyzed (Kauffels, F.-J.; 1989). Jasen, Christopher J.,
C-M Jul 90 134-135

Principles of Computer-Aided Design: Modeling Objects and
Environments (Kalay, Y. E.; 1989). Alley, Maureen, C-M Mar 90 133

Project Universe: An Experiment in High-Speed Computer Networking
(Burren, J. W„ and Cooper, C. S.; 1989). Harkey, John E., C-M Apr 90
141

Quality Engineering Using Robust Design (Phadke, M. S.; 1989).
Garnett, James, C-M Jun 90 126

Quantitative Analysis of Computer Systems (Leung, C. H. C.; 1988).
Morreale, Patricia A., C-M Jun 90 124

Security Mechanisms for Computer Networks (Muftic, S.; 1989).
Schachter, Lome H., C-M Apr 90 140

Silicon Dreams: Information, Man, and Machine (Lucky, R.W.; 1989).
Anderson, William L., C-M May 90 124-125

Software Engineering Management (Sneed, H. M.; 1989). Yaung, Alan
Tsu-I, C-M Sep 90 143

Software Quality Concepts and Plans (Dunn, R. H.; 1990). Horch, John
W„ C-M Oct 90 118

Strategic Information Planning Methodologies, 2nd edn. (Martin, J., and
Leben, J.; 1989). Yeung, Grace C. N„ C-M Jan 90 142

Strategies for Real-Time Specification (Hatley, D. J. & Pribhai, 1. A.;
1988) . Zalewski, Janusz, C-M Dec 90 113-114

Systems Architecture and Systems Design (Chorafas, D. N.; 1989).
Vetter, Jeffrey S., C-M Jun 90 125

Systems Design in a Database Environment (Brathwaite, K. S.; 1989).
McGowan, Marty, C-M Mar 90 131

Systems Engineering: Architecture and Design (Beam, W. R.; 1990).
Newcomb, Randall C„ C-M Jul 90 132

The Design and Analysis of Parallel Algorithms (Akl, S. G.; 1989) Robert,
Yves, C-M Nov 90 134

The Reliability of Expert Systems (Hollnagel, E.; 1989). Driscoll, Brian,
C-M May 90 126

The Transfer of Cognitive Skill (Singley, M. K., and Anderson, J. R.;
1989) . Boyer, Vincent L„ C-M Jan 90 144

Upgrading and Repairing PCs (Mueller, S.; 1989). Bissell, Donald C.,
C-M Aug 90 125

Using C++ (Eckel, B.; 1989). Horstmann, Cay S., C-M Jul 90 133
VLSI Handbook: Silicon, Gallium Arsenide, and Superconductor

Circuits (Di Giacomo, J., Ed.; 1989). Hollins, Jack, C-M Mar 90
133-134

Buffer memories; cf. Cache memories
Built-in testing; cf. Self-testing
Bulk memories; cf. Mass memories
Business economics

book review; Managing for Profit in the Semiconductor Industry (Mclvor,
R.; 1989). Stratton, Robert, C-M Jul 90 134

c
cache architectures in tightly coupled multiprocessors (special issue).

C-M Jun 90 9-82

136 COMPUTER

cache consistency solutions for shared-memory multiprocessors with
multiple translation-lookaside buffers. Teller, Patricia J., C-M Jun 90
26-36

compiler-directed cache management in shared-memory
multiprocessors. Cheong, Hoichi, + , C-M Jun 90 39-47

directory-based and multiple-bus-based cache coherence schemes for
scalable shared-memory multiprocessor architectures. Thakkar,
Shreekant, + , C-M Jun 90 71-74

directory-based cache coherence in large-scale, shared-memory
multiprocessors. Chaiken, David, + , C-M Jun 90 49-58f

multi-multi architecture, multiple-bus cache-coherence scheme for
shared-memory multiprocessors. Carlton, Michael, + , C-M Jun 90

scalable coherent interface, distributed-directory cache coherence
scheme for shared-memory multiprocessors. James, David V., +, C-M
Jun 90 74-77

Stanford distributed-directory cache-coherence protocol for
shared-memory multiprocessors. Thapar, Manu, + , C-M Jun 90 78-80

survey of hardware- and software-based cache coherence schemes for
multiprocessors. Stenstrom, Per, C-M Jun 90 12-24

synchronization algorithms for shared-memory multiprocessors with
cache memories. Graunke, Gary, + , C-M Jun 90 60-69

CASE; cf. Computer-aided software engineering
Circuit analysis

book review; Computer-Aided Circuit Analysis Using SPICE (Banzhaf,
W.; 1989). Posse, Ken, C-M Apr 90 143

Clock synchronization; cf. Synchronization
Coding/decoding

book review; Error-correcting Coding Theory (Rhee, M. Y.; 1989).
Fendrich, John W„ C-M Feb 90 118

design techniques for testable embedded error checkers. McCluskey, E.
J„ C-M Jul 90 84-88

error-control coding in high-speed and mass memories. Fujiwara, Eiji, +,
C-M Jul 90 63-72

fundamental concepts of fault-tolerant computing. Nelson, Victor P., C-M
Jul 90 19-25

Coding/decoding; cf. Bar code reading
Cognitive science

book review; The Transfer of Cognitive Skill (Singley, M. K., and
Anderson, J. R.; 1989). Boyer, Vincent L., C-M Jan 90 144

Command and control systems
bundling speech and graphics in computer interface for AWACS defense

system. Salisbury, Mark W., +, C-M Aug 90 59-65
Communication system performance; cf. Computer network

performance
Communication system reliability; cf. Computer network reliability
Communication system software

book review; Online Communications Software (Ashley, R. et al.; 1989).
Morreale, Patricia A., C-M Mar 90 131-132

Communication system testing
gigabit network testbeds for examining applications and technology.

Gigabit Testbed Initiative Management Ctte., C-M Sep 90 77-80
Communication systems; cf. Teleconferencing
Compilers

compiler-directed cache management in shared-memory
multiprocessors. Cheong, Hoichi, + , C-M Jun 90 39-47

compiling scientific code using partial evaluation. Berlin, Andrew, + ,
C-M Dec 90 25-37

Computation time
common benchmarks measuring hardware speed; overview. Weicker,

Reinhold P., C-M Dec 90 65-75
Computer-aided software engineering

book review; CASE: Concepts and Implementation (Towner, L. E.;
1989). Mutschler, David W., C-M Apr 90 142

Computer animation; cf. Animation
Computer architecture

book review; Computer Architecture and Design (Van De Goor, A. J.;
1989). Sabat, Sunil Kumar, C-M May 90 125

definition and analysis of hardware- and software-fault-tolerance
architectures. Laprie, Jean-Claude, + , C-M Jul 90 39-51

hierarchical taxonomic system for computer architectures. Dasgupta,
Subrata, C-M Mar 90 64-74t

Monarch parallel processor hardware design. Rettberg, Randall D., + ,
C-M Apr 90 18-28,30

survey of parallel computer architectures. Duncan, Ralph, C-M Feb 90
5-16

system architecture for fault tolerance in concurrent software. Ancona,
Massimo, + , C-M Oct 90 23-32

Computer engineering education; cf. Computer science education
Computer fault diagnosis; cf. Logic circuit fault diagnosis
Computer fault tolerance

book review; Dependability of Resi lient Computers (Anderson, T.; 1989).
Anderson, Thomas, C-M Aug 90 126

definition and analysis of hardware- and software-fault-tolerance
architectures. Laprie, Jean-Claude, + , C-M Jul 90 39-51

design techniques for testable embedded error checkers. McCluskey, E.
J., C-M Jul 90 84-88

distributed hierarchical control of multiuser, multiprogrammed parallel
system. Feitelson, Dror G., + , C-M May 90 65-77

fault-tolerant clock synchronization in distributed systems. Ramanathan,
Parameswaran, + , C-M Oct 90 33-42

fault-tolerant systems (special issue). C-M Jul 90 15-88
fundamental concepts of fault-tolerant computing. Nelson, Victor P., C-M

Jul 90 19-25
modeling techniques for assessing multiprocessor dependability; tutorial.

Das, Chita R„ + , C-M Oct 90 7-19
taxonomy of fault tolerance in commercial computers. Siewiorek, Daniel

P„ C-M Jul 90 26-37
taxonomy of reconfiguration techniques for fault-tolerant processor

arrays. Chean, Mengly, + , C-M Jan 90 55-69
tools and techniques for estimating reliability of fault-tolerant systems.

Geist, Robert, + , C-M Jul 90 52-61
Computer fault tolerance; cf. Logic circuit fault tolerance; Memory fault

tolerance; Software fault tolerance
Computer graphics

book review; Computer Graphics (Hill, F. S., Jr.; 1990). Baldassarre, A.
M„ C-M Oct 90 116

book review; Graphics Design and Animation on the IBM
Microcomputers (Sanchez, J.; 1990). Ha, Michael, C-M Jun 90 126

bundling speech and graphics in computer interface for AWACS defense
system. Salisbury, Mark W., +, C-M Aug 90 59-65

case study in reading Pascal algorithms and graphical representations of
its behavior. Crosby, Martha E., + , C-M Jan 90 25-35

design of bitmapped multilingual workstation. Walters, Richard F., C-M
Feb 90 33-41

Garnet tool for creating highly interactive graphical user interfaces.
Myers, Brad A., + , C-M Nov 90 71-85

Computer graphics software; cf. Animation
Computer input/output

design of bitmapped multilingual workstation. Walters, Richard F., C-M
Feb 90 33-41

Computer input/output; cf. Computer interfaces; Keyboards
Computer interfaces

augmenting window system with speech input. Schmandt, Chris, +, C-M
Aug 90 50-56

book review; Coordinating User Interfaces for Consistency (Nielsen, J.,
Ed.; 1989). Paroczai, Andrew J., C-M Nov 90 131

extending notion of window system to audio. Ludwig, Lester F., + , C-M
Aug 90 66-72

Garnet tool for creating highly interactive graphical user interfaces.
Myers, Brad A., + , C-M Nov 90 71-85

graphical data manipulation language for extended entity-relationship
model. Czejdo, Bogdan, + , C-M Mar 90 26-36

history of Posix standardization process (Standards). Isaak, Jim, C-M Jul
90 89-92

user interface management systems and application portability
(Standards). Seacord, Robert C., C-M Oct 90 73-75

voice in computing (special issue). C-M Aug 90 8-80
Computer interfaces; cf. Computer input/output
Computer interfaces, human factors

bundling speech and graphics in computer interface for AWACS defense
system. Salisbury, Mark W, +, C-M Aug 90 59-65

December 1990 137

| ANNUAL INDEX

Computer language processors; cf. Compilers
Computer languages

book review; C++ for C Programmers (Pohl, I.; 1989). Horstmann, Cay
S„ C-M Jul 90 133

book review; Modula-2 Programming: A First Course (Harter, E. D.;
1990). Stenger, Allen, C-M Dec 90 111

book review; Using C++ (Eckel, B.; 1989). Horstmann, Cay S., C-M Jul
90 133

lack of parallel language responsiveness to needs of scientific
programming. Pancake, Cherri M., + , C-M Dec 90 13-23

Computer languages cf. Ada; Visual languages
Computer maintenance; cf. Computer fault tolerance; Microcomputer

maintenance; Software maintenance
Computer network performance

gigabit network testbeds for examining applications and technology.
Gigabit Testbed Initiative Management Ctte., C-M Sep 90 77-80

Computer network reliability
chain reactions leading to failure of computer networks; rules for

minimizing disasters. Manber, Udi, C-M Oct 90 57-63
Computer network security

book review; Security Mechanisms for Computer Networks (Muftic, S.;
1989). Schachter, Lome H„ C-M Apr 90 140

Computer networks; cf. Internetworking; Local area networks
Computer operating systems; cf. Software, operating systems
Computer performance

book review; Computer Systems Performance Management and Capacity
Planning (Cady J. and Howarth, B.; 1990). Veklerov, Eugene, C-M Sep
90 141-142

book review; Quantitative Analysis of Computer Systems (Leung, C. H.
C.; 1988). Morreale, Patricia A., C-M Jun 90 124

hybrid software/hardware system for measuring multiprocessor
performance. Mink, Alan, + , C-M Sep 90 63-75

Computer pipeline processing; cf. Pipeline processing
Computer reliability; cf. Computer fault tolerance; Software reliability
Computer science

book review; Great Ideas in Computer Science: A Gentle Introduction
(Biermann, A. W.; 1990). Bissell, Donald C., C-M Dec 90 112

book review; Illusion of Reality (Resnikoff, H. L.; 1989). Murphy,
Michael G„ C-M Feb 90 117

ethical standards for computer community. McFarland, Michael C., C-M
Mar 90 77-8It

Computer science education
1988-89 Taulbee survey report. Gries, David, + , C-M Oct 90 65-71
education for computing professionals that emphasizes fundamentals.

Pamas, David Lorge, C-M Jan 90 17-22i
Computer security

book review; Building a Secure Computer System (Gasser, M.; 1988).
Guinier, Daniel, C-M Nov 90 132

book review; Computer Viruses, Worms, Data Diddlers, Killer Programs,
and Other Threats to Your System (McAfee, J., and Haynes, C.; 1989).
Gross, Robert M., C-M Jan 90 142-143

scalable, secure, and highly available distributed file access with Andrew
and Coda distributed Unix file systems. Satyanarayanan, Mahadev,
C-M May 90 9-18, 20-21

specification and modeling of computer security with reference to access
control. McLean, John, C-M Jan 90 9-16

Computer testing
noninvasive architecture for monitoring real-time distributed systems.

Tsai, Jeffrey J. P., + , C-M Mar 90 11-234
Computer testing; cf. Memory testing
Computer vision; cf. Machine vision
Computers

book review; Implementation of Small Computer Systems: Case Studies
of Applications (Whiddet, R. J.). Facelli, Julio C., C-M May 90 126

book review; Silicon Dreams: Information, Man and Machine (Lucky,
R.W.; 1989). Anderson, William L„ C-M May 90 124-125

Computers; cf. Database machines; Distributed computing; Parallel
processing

D
Data communication; cf. Integrated voice/data communication; Local

area networks; Multiprocessing, interconnection;
Teleconferencing

Data management; cf. Database management systems
Data models

graphical data manipulation language for extended entity-relationship
model. Czejdo, Bogdan, + , C-M Mar 90 26-36

Data security; cf. Computer security
Data structures

converging technologies and diverging interests and research directions
of knowledge bases and databases. Freundlich, Yehudah, C-M Nov 90
51-57

Database machines
multiprocessor algorithms for relational database operations on

hypercube systems. Frieder, Ophir, C-M Nov 90 13-28
Database management systems

book review; CASE: Concepts and Implementation (Towner, L. E.;
1989). Mutschler, David W„ C-M Apr 90 142

book review; OS/2 Database Manager: A Developer’s Guide (Fosdick,
H.; 1989). Pasieka, George, C-M Jul 90 132

databases and cell-selection algorithms for VLSI cell libraries. Foo,
Simon Y„ + , C-M Feb 90 18-30

Intelligent Databases (Parsaye, K., et al.; 1989). Sastry, Mark N., C-M
Jan 90 143

Database systems
book review; Knowledge Systems Design (Debenham, John K.; 1989).

Mullin, Albert A., C-M Feb 90 119
book review; Systems Design in a Database Environment (Brathwane.

K. S.; 1989). McGowan, Marty, C-M Mar 90 131
Fundamentals of Database Systems (Elmasri, R. and Navathe, S. B.;

1989). Etlinger, Henry A., C-M Feb 90 118-119
Database systems; cf. Database management systems; Information

systems; Intelligent systems
Database systems, relational

graphical data manipulation language for extended entity-relationship
model. Czejdo, Bogdan, + , C-M Mar 90 26-36

multiprocessor algorithms for relational database operations on
hypercube systems. Frieder, Ophir, C-M Nov 90 13-28

Databases
converging technologies and diverging interests and research directions

of knowledge bases and databases. Freundlich, Yehudah, C-M Nov 90
51-57

Decoding; cf. Coding/decoding
Design automation; cf. Design automation software
Design automation software

book review; Principles of Computer-Aided Design: Modeling Objects
and Environments. Alley, Maureen, C-M Mar 90 133

databases and cell-selection algorithms for VLSI cell libraries. Foo,
Simon Y„ + , C-M Feb 90 18-30

Design methodology
book review; Quality Engineering Using Robust Design (Phadke, M. S.;

1989). Garnett, James, C-M Jun 90 126
Digital communication; cf. Coding/decoding; Integrated voice/data

communication
Digital image processing; cf. Image processing
Digital integrated circuits; cf. Very-large-scale integration
Digital system fault diagnosis; cf. Logic circuit fault diagnosis
Digital system fault tolerance; cf. Computer fault tolerance; Logic

circuit fault tolerance; Memory fault tolerance
Digital system testing; cf. Computer testing; Memory testing
Displays; cf. Computer graphics
Distributed computing

Liang, Luping, + , C-M Feb 90 56-66
Amoeba, distributed operating system that appears as single, centralized,

time-sharing system. Mullender, Sape J., + , C-M May 90 44-53
Athena, distributed workstation system for high-quality campuswide

computing. Champine, George A., + , C-M Sep 90 40-51

138 COMPUTER

comparison of four algorithms implementing distributed shared memory.
Stumm, Michael, + , C-M May 90 54-64

fault-tolerant clock synchronization in distributed systems. Ramanathan,
Parameswaran, + , C-M Oct 90 33-42

noninvasive architecture for monitoring real-time distributed systems.
Tsai, Jeffrey J. P„ + , C-M Mar 90 11-23+

recent developments in operating systems (special issue). C-M May 90
5-77

scalable, secure, and highly available distributed file access with Andrew
and Coda distributed Unix file systems. Satyanarayanan, Mahadev,
C-M May 90 9-18, 20-21

scheduling support for concurrency and parallelism in Mach operating
system. Black, David L., C-M May 90 35-43

system architecture for fault tolerance in concurrent software. Ancona,
Massimo, + , C-M Oct 90 23-32

x-kemel, operating system for personal workstations allowing uniform
access to internet resources. Peterson, Larry, + , C-M May 90 23-33

Distributed control
distributed hierarchical control of multiuser, multiprogrammed parallel

system. Feitelson, Dror G., + , C-M May 90 65-77

E
Economics; cf. Business economics
Education; cf. Computer science education
Educational technology

Athena, distributed workstation system for high-quality campuswide
computing. Champine, George A., + , C-M Sep 90 40-51

Electromagnetic radiation effects; cf. Biological radiation effects,
electromagnetic

Electronics industry
book review; Managing for Profit in the Semiconductor Industry (Mclvor,

R.; 1989). Stratton, Robert, C-M Jul 90 134
ELF radiation effects; cf. Biological radiation effects, electromagnetic
Error-control coding; cf. Coding/decoding
Error-correction coding; cf. Coding/decoding
Error-detection coding; cf. Coding/decoding
Error-protection coding; cf. Coding/decoding
Ethics

ethical standards for computer community. McFarland, Michael C., C-M
Mar 90 77-811

Expert systems
book review; Knowledge Systems Design (Debenham, John K.; 1989).

Mullin, Albert A., C-M Feb 90 119
book review; Logic-based Knowledge Representation (Jackson, P., et. al.;

1989). Jenkins, John, C-M Feb 90 117
book review; The Reliability of Expert Systems (Hollnagel, E.; 1989).

Driscoll, Brian, C-M May 90 126
converging technologies and diverging interests and research directions

of knowledge bases and databases. Freundlich, Yehudah, C-M Nov 90
51-57

expert-system shell using structured knowledge; object-oriented
approach. Leung, K. S., + , C-M Mar 90 38-47

Expert systems; cf. Intelligent systems

F
Fault diagnosis; cf. Fault trees; Logic circuit fault diagnosis
Fault tolerance; cf. Computer fault tolerance; Logic circuit fault

tolerance; Memory fault tolerance; Software fault tolerance
Fault trees

chain reactions leading to failure of computer networks; rules for
minimizing disasters. Manber, Udi, C-M Oct 90 57-63

File systems
Amoeba, distributed operating system that appears as single, centralized,

time-sharing system. Mullender, Sape J., + , C-M May 90 44-53
book review; Data Exchange PC/MS DOS (Ross, S. S.; 1989).

Vallabhaneni, Krishna, C-M Oct 90 117
scalable, secure, and highly available distributed file access with Andrew

and Coda distributed Unix file systems. Satyanarayanan, Mahadev,
C-M May 90 9-18, 20-21

x-kemel, operating system for personal workstations allowing uniform
access to internet resources. Peterson, Larry, + , C-M May 90 23-33

G
Gallium materials/devices

book review; VLSI Handbook: Silicon, Gallium Arsenide, and
Superconductor Circuits (Di Giacomo, J., Ed.; 1989). Hollins, Jack,
C-M Mar 90 133-134

Graph theory
matrix computations on systolic-type meshes using multimesh graph

method. Moreno, Jaime H., + , C-M Apr 90 32-51
Graphics; cf. Computer graphics
Group communication

support requirements and classification of various distributed
applications. Liang, Luping, + , C-M Feb 90 56-66

H
Handicapped persons

reactive keyboard typing aid that partially automates input using
prediction. Darragh, John J., + , C-M Nov 90 41-49

Hierarchical systems
distributed hierarchical control of multiuser, multiprogrammed parallel

system. Feitelson, Dror G., + , C-M May 90 65-77
Human factors; cf. Computer interfaces, human factors

I
Iconic languages; cf. Visual languages
Identification of persons; cf. Speaker recognition
IEEE Computer Society; cf. Awards
IEEE standards

history of Posix standardization process (Standards). Isaak, Jim, C-M Jul
90 89-92

IEEE Project 802 for local area networks; history and status (Standards).
Gibson, Ronald W„ C-M Aug 90 84-89

keeping IEEE standards international. Maunder, Colin, C-M Mar 90 4
Image processing

book review; Digital Image Processing and Computer Vision (Schalkoff,
R. J.; 1989). Nadler, Morton, C-M Nov 90 133-134

Information retrieval
book review; Hypertext Hands-On (Shneiderman, B., and Kearsley, G.;

1989). Goodman, Gordon, C-M Jan 90 141
Information systems

book review; Strategic Information Planning Methodologies, 2nd edn.
(Martin, J., and Leben, J.; 1989). Yeung, Grace C. N., C-M Jan 90 142

Information systems; cf. Database systems
Information theory

book review; Illusion of Reality (Resnikoff, H. L.; 1989). Murphy,
Michael G„ C-M Feb 90 117

fundamentals of bar code information theory; encoding problems and
solutions. Pavlidis, Theo, + , C-M Apr 90 74-86

Integrated-circuit testing; cf. Memory testing
Integrated circuits; cf. Application-specific integrated circuits;

Very-large-scale integration
Integrated circuits industry; cf. Electronics industry
Integrated voice/data communication

Personal Exchange (PX), architecture that supports voice in workstations.
Kamel, Ragui, + , C-M Aug 90 73-80

voice in computing (special issue). C-M Aug 90 8-80
voice in computing; overview of available technologies. Strathmeyer,

Carl R., C-M Aug 90 10-15
Intelligent systems

Intelligent Databases (Parsaye, K., et al.; 1989). Sastry, Mark N., C-M
Jan 90 143

Internetworking
x-kemel, operating system for personal workstations allowing uniform

access to internet resources. Peterson, Larry, + , C-M May 90 23-33

December 1990 139

ANNUAL INDEX

J
an American’s view of the Japanese standards system (Standards). Stem,

John P„ C-M Nov 90 87-89
Anser, system using speech recognition and synthesis to provide

telephone banking in Japan. Nakatsu, Ryohei, C-M Aug 90 43-48

K
Keyboards

reactive keyboard typing aid that partially automates input using
prediction. Darragh, John J., + , C-M Nov 90 41-49

Knowledge-based systems; cf. Expert systems

L
LAN; cf. Local area networks
Languages

design of bitmapped multilingual workstation. Walters, Richard F., C-M
Feb 90 33-41

Languages; cf. Computer languages
Large-scale integration; cf. Very-large-scale integration
Linear algebra; cf. Matrices
Local area networks

book review; Practical LANs Analyzed (Kauffels, F.-J.; 1989). Jasen,
Christopher J., C-M Jul 90 134-135

book review; Project Universe: An Experiment in High-Speed Computer
Networking (Burren, J. W., and Cooper, C. S.; 1989). Harkey, JohnE.,
C-M Apr 90 141

IEEE Project 802 for local area networks; history and status (Standards).
Gibson, Ronald W„ C-M Aug 90 84-89

multimedia conferencing on local area networks. Ziegler, Chaim, +, C-M
Sep 90 52-61

Local area networks; cf. Internetworking
Logic circuit fault diagnosis

distributed digital circuit fault simulation; evaluation of fault-tolerant
simulation facility, DFSim. Markas, Tassos, + , C-M Jan 90 40-52

Logic circuit fault tolerance
fault-tolerant design for yield enhancement of very large VLSI circuits.

Koren, Israel, + , C-M Jul 90 73-83
Logic programming

book review; Logic-based Knowledge Representation (Jackson, P., et. al.;
1989). Jenkins, John, C-M Feb 90 117

M
Machine vision

book review; Digital Image Processing and Computer Vision (Schalkoff,
R. J.; 1989). Nadler, Morton, C-M Nov 90 133-134

Maintenance; cf. Software maintenance
Manipulators

book review; Applied Control of Manipulation Robots (Vukobratovic, M.
and Stokic, D.; 1989). Tanner, Ralph, C-M Sep 90 140

Mass memories
error-control coding in high-speed and mass memories. Fujiwara, Eiji, +,

C-M Jul 90 63-72
Matrices

matrix computations on systolic-type meshes using multimesh graph
method. Moreno, Jaime H., + , C-M Apr 90 32-51

Memories; cf. Cache memories; Mass memories; Random-access
memories

Memory fault tolerance
error-control coding in high-speed and mass memories. Fujiwara, Eiji, +,

C-M Jul 90 63-72
fault-tolerant design for yield enhancement of very large VLSI circuits.

Koren, Israel, + , C-M Jul 90 73-83
Memory management

cache architectures in tightly coupled multiprocessors (special issue).
C-M Jun 90 9-82

cache consistency solutions for shared-memory multiprocessors with
multiple translation-lookaside buffers. Teller, Patricia J., C-M Jun 90
26-36

comparison of four algorithms implementing distributed shared memory.
Stumm, Michael, + , C-M May 90 54-64

compiler-directed cache management in shared-memory
multiprocessors. Cheong, Hoichi, + , C-M Jun 90 39-47

directory-based and multiple-bus-based cache coherence schemes for
scalable shared-memory multiprocessor architectures. Thakkar,
Shreekant, + , C-M Jun 90 71-74

directory-based cache coherence in large-scale, shared-memory
multiprocessors. Chaiken, David, + , C-M Jun 90 49-58f

multi-multi architecture, multiple-bus cache-coherence scheme for
shared-memory multiprocessors. Carlton, Michael, + , C-M Jun 90
80-83

scalable coherent interface, distributed-directory cache coherence
scheme for shared-memory multiprocessors. James, David V., +, C-M
Jun 90 74-77

Stanford distributed-directory cache-coherence protocol for
shared-memory multiprocessors. Thapar, Manu, + , C-M Jun 90 78-80

survey of hardware- and software-based cache coherence schemes for
multiprocessors. Stenstrom, Per, C-M Jun 90 12-24 a

Memory testing
built-in self-testing of random-access memories. Franklin, Manoj, + ,

C-M Oct 90 45-56
Microcomputer interfaces

history of Posix standardization process (Standards). Isaak, Jim, C-M Jul
90 89-92

Microcomputer maintenance
book review; Upgrading and Repairing PCs (Mueller, S.; 1989). Bissell,

Donald C„ C-M Aug 90 125
Microcomputer software

book review; Online Communications Software (Ashley, R. et al.; 1989).
Morreale, Patricia A., C-M Mar 90 131-132

comments on review of TeX. Radel, Jon, C-M Mar 90 5
Military command and control; cf. Command and control systems
Military systems

bundling speech and graphics in computer interface for AWACS defense
system. Salisbury, Mark W., + , C-M Aug 90 59-65

Monitoring
noninvasive architecture for monitoring real-time distributed systems.

Tsai, Jeffrey J. P„ + , C-M Mar 90 ll-23t
Multilevel systems; cf. Hierarchical systems
Multimedia systems

multimedia conferencing on local area networks. Ziegler, Chaim, +, C-M
Sep 90 52-61

Multiprocessing
architecture-independent parallel computation; Bird-Meertens

formulation. SkiUicom, David B., C-M Dec 90 38-49
book review; The Design and Analysis of Parallel Algorithms (Akl, S.

G.; 1989). Robert, Yves, C-M Nov 90 134
cache architectures in tightly coupled multiprocessors (special issue).

C-M Jun 90 9-82
cache consistency solutions for shared-memory multiprocessors with 1

multiple translation-lookaside buffers. Teller, Patricia J., C-M Jun 90
26-36

compiler-directed cache management in shared-memory
multiprocessors. Cheong, Hoichi, + , C-M Jun 90 39-47

compiling scientific code using partial evaluation. Berlin, Andrew, + ,
C-M Dec 90 25-36

directory-based and multiple-bus-based cache coherence schemes for
scalable shared-memory multiprocessor architectures. Thakkar,
Shreekant, + , C-M Jun 90 71-74

directory-based cache coherence in large-scale, shared-memory
multiprocessors. Chaiken, David, + , C-M Jun 90 49-58f

distributed hierarchical control of multiuser, multiprogrammed parallel
system. Feitelson, Dror G„ +, C-M May 90 65-77

hybrid software/hardware system for measuring multiprocessor
performance. Mink, Alan, + , C-M Sep 90 63-75

lack of parallel language responsiveness to needs of scientific
programming. Pancake, Cherri M„ +, C-M Dec 90 13-23

Linda parallel communication paradigm; use as basis of QIX operating
system. Leler, Wm, C-M Feb 90 43-54

140 COMPUTER

modeling techniques for assessing multiprocessor dependability; tutorial.
Das, Chita R„ + , C-M Oct 90 7-19

Monarch parallel processor hardware design. Rettberg, Randall D., + ,
C-M Apr 90 18-28, 30

multi-multi architecture, multiple-bus cache-coherence scheme for
shared-memory multiprocessors. Carlton, Michael, + , C-M Jun 90
80-83

multiprocessor algorithms for relational database operations on
hypercube systems. Frieder, Ophir, C-M Nov 90 13-28

scalable coherent interface, distributed-directory cache coherence
scheme for shared-memory multiprocessors. James, David V., + , C-M
Jun 90 74-77

Stanford distributed-directory cache-coherence protocol for
shared-memory multiprocessors. Thapar, Manu, + , C-M Jun 90 78-80

survey of hardware- and software-based cache coherence schemes for
multiprocessors. Stenstrom, Per, C-M Jun 90 12-24

survey of parallel computer architectures. Duncan, Ralph, C-M Feb 90
5-16

synchronization algorithms for shared-memory multiprocessors with
cache memories. Graunke, Gary, + , C-M Jun 90 60-69

taxonomy of fault tolerance in commercial computers. Siewiorek, Daniel
P„ C-M Jul 90 26-37

Multiprocessing; cf. Distributed computing
Multiprocessing, interconnection

Monarch parallel processor hardware design. Rettberg, Randall D., + ,
C-M Apr 90 18-28, 30

taxonomy of reconfiguration techniques for fault-tolerant processor
arrays. Chean, Mengly, + , C-M Jan 90 55-69

Multiprogramming
distributed hierarchical control of multiuser, multiprogrammed parallel

system. Feitelson, Dror G., + , C-M May 90 65-77
real-time scheduling theory and its implications for Ada. Sha, Lui, + ,

C-M Apr 90 53-62
Multitasking; cf. Multiprogramming
Music

book review; Elements of Computer Music (Moore, F. R.; 1990).
Lauritsen, Marc, C-M Oct 90 117

N
Networks; cf. Multiprocessing, interconnection; Neural networks
Neural networks

book review; Neural and Concurrent Real-Time Systems: The Sixth
Generation (Soucek, B.; 1989). Johnson, James L., C-M Sep 90 141

book review; Neural Computing: Theory and Practice (Wasserman, P. D.;
1989). Akhavi, Mina, C-M Aug 90 124

o
Object-oriented programming

expert-system shell using structured knowledge; object-oriented
approach. Leung, K. S., + , C-M Mar 90 38-47

object-oriented structured design notation for software design
respresentation. Wasserman, Anthony L, + , C-M Mar 90 50-63

Operating systems; cf. Software, operating systems

P
Parallel processing

survey of parallel computer architectures. Duncan, Ralph, C-M Feb 90
5-16

Pattern recognition; cf. Speaker recognition; Speech recognition
Pipeline processing

survey of parallel computer architectures. Duncan, Ralph, C-M Feb 90
5-16

Pipeline processing; cf. Systolic arrays
Planning

book review; Strategic Information Planning Methodologies, 2nd edn.
(Martin, J„ and Leben, J.; 1989). Yeung, Grace C. N., C-M Jan 90 142

Prediction methods
reactive keyboard typing aid that partially automates input using

prediction. Darragh, John J., + , C-M Nov 90 41-49
Product coding (consumer products); cf. Bar code reading
Programming; cf. Object-oriented programming; Software

design/development
Publishing

guidelines for refereeing paper using common standards and procedures.
Smith, Alan Jay, C-M Apr 90 65-71

Q
Quality control; cf. Software quality
Query languages

book review; DB2 SQL: A Professional Programmer’s Guide (Martyn,
T„ and Hartley, T.; 1989). Wahl, Dan, C-M Aug 90 125

R
Random-access memories

built-in self-testing of random-access memories. Franklin, Manoj, + ,
C-M Oct 90 45-56

RD&E management
book review; Computers and Engineering Management (Wheeler, T. F.;

1989). McClanahan, James B„ C-M Oct 90 118
Real-time systems

book review; Neural and Concurrent Real-Time Systems: The Sixth
Generation (Soucek, B.; 1989). Johnson, James L., C-M Sep 90 141

book review; Strategies for Real-Time Specification (Hatley, D. J. &
Pribhai, I. A.; 1988). Zalewski, Janusz, C-M Dec 90 113-114

noninvasive architecture for monitoring real-time distributed systems.
Tsai, Jeffrey J. P., + , C-M Mar 90 11-23|

real-time scheduling theory and its implications for Ada. Sha, Lui, + ,
C-M Apr 90 53-62

Reliability; cf. Software reliability
Reliability estimation

tools and techniques for estimating reliability of fault-tolerant systems.
Geist, Robert, + , C-M Jul 90 52-61

Robots
book review; Mind Children: The Future of Robot and Human

Intelligence (Moravec, H.; 1988). Mirsa, Sheo G., C-M Dec 90 112-113
Robustness

book review; Quality Engineering Using Robust Design (Phadke, M. S.;
1989). Garnett, James, C-M Jun 90 126

s
Scheduling

real-time scheduling theory and its implications for Ada. Sha, Lui, + ,
C-M Apr 90 53-62

scheduling support for concurrency and parallelism in Mach operating
system. Black, David L., C-M May 90 35-43

Security; cf. Computer security
Self-testing

built-in self-testing of random-access memories. Franklin, Manoj, + ,
C-M Oct 90 45-56

design techniques for testable embedded error checkers. McCluskey, E.
J., C-M Jul 90 84-88

Semiconductor electronics industry; cf. Electronics industry
Signal processing

book review; Digital Signal Processing Design (Bateman A., and Yates,
W.; 1989). Sittig, Dean F„ C-M Apr 90 141-142

Signal processing; cf. Array processing; Speech processing
Silicon materials/devices

book review; VLSI Handbook: Silicon, Gallium Arsenide, and
Superconductor Circuits (Di Giacomo, J., Ed.; 1989). Hollins, Jack,
C-M Mar 90 133-134

Simulation
book review; Computer Modeling for Discrete Simulation (Pidd, M., Ed.;

1989). Irakliotis, Leonidas J., C-M Aug 90 124

December 1990 141

ANNUAL INDEX

distributed digital circuit fault simulation; evaluation of fault-tolerant
simulation facility, DFSim. Markas, Tassos, +, C-M Jan 90 40-52

Social factors; cf. Technology social factors
Software

case study in reading Pascal algorithms and graphical representations of
its behavior. Crosby, Martha E., + , C-M Jan 90 25-35

voice in computing; overview of available technologies. Strathmeyer,
Carl R„ C-M Aug 90 10-15

Software; cf. Computer languages; Database management systems;
Design automation software; Microcomputer software;
Multiprogramming

Software, operating systems
Liang, Luping, + , C-M Feb 90 56-66
Amoeba, distributed operating system that appears as single, centralized,

time-sharing system. Mullender, Sape J., + , C-M May 90 44-53
Athena, distributed workstation system for high-quality campuswide

computing. Champine, George A., + , C-M Sep 90 40-51
comparison of four algorithms implementing distributed shared memory.

Stumm, Michael, +, C-M May 90 54-64
distributed hierarchical control of multiuser, multiprogrammed parallel

system. Feitelson, Dror G., + , C-M May 90 65-77
letters to editor. Jude, Michael R., C-M Mar 90 4
Linda parallel communication paradigm; use as basis of QIX operating

system. Leler, Wm, C-M Feb 90 43-54
recent developments in operating systems (special issue). C-M May 90

5-77
scalable, secure, and highly available distributed file access with Andrew

and Coda distributed Unix file systems. Satyanarayanan, Mahadev,
C-M May 90 9-18, 20-21

scheduling support for concurrency and parallelism in Mach operating
system. Black, David L„ C-M May 90 35-43

strategies for supporting application portability. Mooney, James D., C-M
Nov 90 59-70

x-kemel, operating system for personal workstations allowing uniform
access to internet resources. Peterson, Larry, + , C-M May 90 23-33

Software, utility programs
book review; Data Exchange PC/MS DOS (Ross, S. S.; 1989).

Vallabhaneni, Krishna, C-M Oct 90 117
Software design/development

book review; An Implementation Guide to Real-Time Programming
(Ripps, D. L.; 1989). Zalewski, Janusz, C-M Jun 90 124-125

book review; Functional Programming: Practice and Theory
(MacLennan, B. J.; 1990). Leonardis, Sante, C-M Sep 90 140

book review; Implementation of Small Computer Systems: Case Studies
of Applications (Whiddet, R. J.). Facelli, Julio C., C-M May 90 126

book review; Modula-2 Programming: A First Course (Harter, E. D.;
1990). Stenger, Allen, C-M Dec 90 111

book review; OS/2 Database Manager: A Developer’s Guide (Fosdick,
H.; 1989). Pasieka, George, C-M Jul 90 132

book review; The Design and Analysis of Parallel Algorithms (Akl, S.
G.; 1989). Robert, Yves, C-M Nov 90 134

issues connected with standard environment for software production
(Standards). Buckley, Fletcher J., C-M Jan 90 75-77

philosophies for engineering computer-based systems. Lawson, Harold
W., C-M Dec 90 52-63

strategies for supporting application portability. Mooney, James D., C-M
Nov 90 59-70

Tango, framework and system for algorithm animation. Stasko, John T.,
C-M Sep 90 27-39

Software design/development; cf. Computer-aided software
engineering; Microcomputer software design/development;
Object-oriented programming

Software development environments
Garnet tool for creating highly interactive graphical user interfaces.

Myers, Brad A., +, C-M Nov 90 71-85
Software development management

book review; Software Engineering Management (Sneed, H. M.; 1989).
Yaung, Alan Tsu-I, C-M Sep 90 143

Software fault tolerance
definition and analysis of hardware- and software-fault-tolerance

architectures. Laprie, Jean-Claude, + , C-M Jul 90 39-51
distributed digital circuit fault simulation; evaluation of fault-tolerant

simulation facility, DFSim. Markas, Tassos, + , C-M Jan 90 40-52

system architecture for fault tolerance in concurrent software. Ancona,
Massimo, + , C-M Oct 90 23-32

Software maintenance
book review; A Program Architecture for Improved Maintainability in

Software Engineering (Einbu, J.; 1989). Birss, Robert C., C-M Mar 90
132

Software management; cf. Software development management
Software metrics

book review; Measuring Software Design Quality (Card, D. N. & Glass,
R. L.; 1990). Spiller, Paolo, C-M Nov 90 132

establishing standard, software metrics program (Standards). Buckley,
Fletcher J., C-M Jun 90 85-86

Software performance
comparison of four algorithms implementing distributed shared memory.

Stumm, Michael, +, C-M May 90 54-64
Tango, framework and system for algorithm animation. Stasko, John T.,

C-M Sep 90 27-39
Software quality

book review; Software Quality Concepts and Plans (Dunn, R. H.; 1990).
Horch, John W., C-M Oct 90 118

Software reliability
book review; The Reliability of Expert Systems (Hollnagel, E.; 1989).

Driscoll, Brian, C-M May 90 126
Software reliability; cf. Software fault tolerance
Software requirements and specifications

book review; Strategies for Real-Time Specification (Hatley, D. J. &
Pribhai, I. A.; 1988). Zalewski, Janusz, C-M Dec 90 113-114

formal methods for specification of computer systems; introduction.
Wing, Jeanette M„ C-M Sep 90 8, 10-22,24

specification and modeling of computer security with reference to access
control. McLean, John, C-M Jan 90 9-16

Software reusability
confessions of used-program salesman, same old song (Open Channel).

Tracz, Will, C-M Jan 90 72
Software standards

applications environment profiles; significant tool for simplifying and
coordinating standard efforts (Standards). IEEE Computer Society
Tech. Ctte. on Operating Systems and Operating Environments, +, C-M
Feb 90 69-70

establishing standard, software metrics program (Standards). Buckley,
Fletcher J., C-M Jun 90 85-86

history of Posix standardization process (Standards). Isaak, Jim, C-M Jul
90 89-92

issues connected with standard environment for software production
(Standards). Buckley, Fletcher J., C-M Jan 90 75-77

user interface management systems and application portability
(Standards). Seacord, Robert C., C-M Oct 90 73-75

Software verification and validation
functional correctness model of program verification. Zelkowitz, Marvin

V., C-M Nov 90 30-40
Sound systems; cf. Audio systems
Speaker recognition

introduction to speech and speaker recognition. Peacocke, Richard D., +,
C-M Aug 90 26-33

Special issues/sections
cache architectures in tightly coupled multiprocessors. C-M Jun 90 9-82
fault-tolerant systems. C-M Jul 90 15-88
recent developments in operating systems. C-M May 90 5-77
voice computing. C-M Aug 90 8-80

Speech communication; cf. Integrated voice/data communication
Speech processing

extending notion of window system to audio. Ludwig, Lester F., + , C-M
Aug 90 66-72

Speech recognition
Anser, system using speech recognition and synthesis to provide

telephone banking in Japan. Nakatsu, Ryohei, C-M Aug 90 43-48
augmenting window system with speech input. Schmandt, Chris, +, C-M

Aug 90 50-56
automated billing in telephone network using speech recognition. Lennig,

Matthew, C-M Aug 90 35-41
bundling speech and graphics in computer interface for AWACS defense

system. Salisbury, Mark W., + , C-M Aug 90 59-65

142 COMPUTER

introduction to speech and speaker recognition. Peacocke, Richard D., +,
C-M Aug 90 26-33

voice in computing (special issue). C-M Aug 90 8-80
voice in computing; overview of available technologies. Strathmeyer,

Carl R., C-M Aug 90 10-15
Speech recognition; cf. Speaker recognition
Speech synthesis

Anser, system using speech recognition and synthesis to provide
telephone banking in Japan. Nakatsu, Ryohei, C-M Aug 90 43-48

bundling speech and graphics in computer interface for AWACS defense
system. Salisbury, Mark W., +, C-M Aug 90 59-65

text-to-speech conversion technology overview. O’Malley, Michael H.,
C-M Aug 90 17-23

voice in computing (special issue). C-M Aug 90 8-80
voice in computing; overview of available technologies. Strathmeyer,

Carl R., C-M Aug 90 10-15
Standards

an American’s view of the Japanese standards system (Standards). Stem,
John P„ C-M Nov 90 87-89

debate over impact of ELF magnetic fields (Standards). Buckley, Fletcher
J„ C-M Apr 90 95-97

ethical standards for computer community. McFarland, Michael C., C-M
Mar 90 77-8If

evolving relationship between open standards and technology
(Standards). Rosing, Wayne E„ + , C-M Sep 90 82-84

how not to write commercial standards (Standards). Berlack, H. Ronald,
C-M May 90 79-81

role of IEE in information technology standards development in UK
(Standards). Kemp, Alasdair, C-M Dec 90 76-78

Standards; cf. IEEE standards; Software standards
Statistics

laws of statistics (Open Channel). Drissel, William E„ C-M May 90 128
Structured programming

object-oriented structured design notation for software design
respresentation. Wasserman, Anthony I., +, C-M Mar 90 50-63

Superconducting devices
book review; VLSI Handbook: Silicon, Gallium Arsenide, and

Superconductor Circuits (Di Giacomo, J., Ed.; 1989). Hollins, Jack,
C-M Mar 90 133-134

Synchronization
fault-tolerant clock synchronization in distributed systems. Ramanathan,

Parameswaran, + , C-M Oct 90 33-42
real-time scheduling theory and its implications for Ada. Sha, Lui, + ,

C-M Apr 90 53-62
synchronization algorithms for shared-memory multiprocessors with

cache memories. Graunke, Gary, + , C-M Jun 90 60-69
System analysis and design

book review; Object-Oriented Analysis (Coad, P„ and Yourdon,E.; 1990).
Zheng, Xiaojun, C-M Aug 90 126

book review; Systems Architecture and Systems Design (Chorafas, D.
N.; 1989). Vetter, Jeffrey S„ C-M Jun 90 125

book review; Systems Design in a Database Environment (Brathwaite,
K. S.; 1989). McGowan, Marty, C-M Mar 90 131

book review; Systems Engineering: Architecture and Design (Beam, W.
R.; 1990). Newcomb, Randall C„ C-M Jul 90 132

System engineering
book review; Systems Engineering: Architecture and Design (Beam, W.

R.; 1990). Newcomb, Randall C„ C-M Jul 90 132
philosophies for engineering computer-based systems. Lawson, Harold

W„ C-M Dec 90 52-63
Systolic arrays

matrix computations on systolic-type meshes using multimesh graph
method. Moreno, Jaime H., + , C-M Apr 90 32-51

survey of parallel computer architectures. Duncan, Ralph, C-M Feb 90
5-16

T
Technology social factors

book review; Silicon Dreams: Information, Man and Machine (Lucky,
R.W.; 1989). Anderson, William L„ C-M May 90 124-125

Teleconferencing
multimedia conferencing on local area networks. Ziegler, Chaim, +, C-M

Sep 90 52-61
Telephone systems

Anser, system using speech recognition and synthesis to provide
telephone banking in Japan. Nakatsu, Ryohei, C-M Aug 90 43-48

automated billing in telephone network using speech recognition. Lennig,
Matthew, C-M Aug 90 35-41

Testing; cf. Communication system testing; Computer testing; Memory
testing; Self-testing

Text processing
text-to-speech conversion technology overview. O’Malley, Michael H.,

C-M Aug 90 17-23
Time synchronization; cf. Synchronization
Trees, graphs; cf. Fault trees
Typesetting

comments on review of TeX. Radel, Jon, C-M Mar 90 5

u
United Kingdom

role of IEE in information technology standards development in UK
(Standards). Kemp, Alasdair, C-M Dec 90 76-78

United States
an American’s view of the Japanese standards system (Standards). Stem,

John P., C-M Nov 90 87-89
Universal product codes; cf. Bar code reading
Utility programs; cf. Software, utility programs

V
Vector processing

survey of parallel computer architectures. Duncan, Ralph, C-M Feb 90
5-16

Very-large-scale integration
book review; VLSI Handbook: Silicon, Gallium Arsenide, and

Superconductor Circuits (Di Giacomo, J., Ed.; 1989). Hollins, Jack,
C-M Mar 90 133-134

databases and cell-selection algorithms for VLSI cell libraries. Foo,
Simon Y., + , C-M Feb 90 18-30

fault-tolerant design for yield enhancement of very large VLSI circuits.
Koren, Israel, + , C-M Jul 90 73-83

Videoconferencing; cf. Teleconferencing
Visual languages

graphical data manipulation language for extended entity-relationship
model. Czejdo, Bogdan, + , C-M Mar 90 26-36

VLSI; cf. Very-large-scale integration

w
Workstations

Athena, distributed workstation system for high-quality campuswide
computing. Champine, George A., + , C-M Sep 90 40-51

design of bitmapped multilingual workstation. Walters, Richard F„ C-M
Feb 90 33-41

Personal Exchange (PX), architecture that supports voice in workstations.
Kamel, Ragui, + , C-M Aug 90 73-80

x-kemel, operating system for personal workstations allowing uniform
access to internet resources. Peterson, Larry, + , C-M May 90 23-33

Y
Yield optimization

fault-tolerant design for yield enhancement of very large VLSI circuits.
Koren, Israel, + , C-M Jul 90 73-83

December 1990 143

USE THE READER
SERVICE CARD TO OBTAIN
INFORMATION ON:

PUBLICATIONS AND
ACTIVITIES

• Membership application, student #203, others #202
• Perodicals subscription form for individuals #200
• Periodicals subscription form for organizations #199
• Publications catalog #201
• Compmail II electronic mail brochure #194
• Technical committee list/application #197
• Chapters lists, start-up procedures #193
• Student scholarship information #192
• Volunteer leaders/staff directory #196
• IEEE senior member grade application #204

(requires ten years practice and significant performance in five of those ten)

To check membersh ip status or report a change of address, cal I the IEEE tol l-free number,
1 -800-678-4333. Direct all other Computer Society related questions to the Publications
Office.

The IEEE Computer Society advances the theory and practice of computer science and
engineering, promotes the exchange of technical information among 100,000 members
worldwide, and provides a wide range of services to members and nonmembers.

Members receive the acclaimed monthly magazine Computer, discounts, and opportu¬
nities to serve (all activities are led by volunteer members). Membership is open to all IEEE
members, affiliate society members, and others interested in the computer field.

Computer. An authoritative, easy-to-read magazine con¬
taining tutorial and in-depth articles on topics across the com¬
puter field, plus news, conferences, calendar, interviews, and
product reviews.
Periodicals. The society publishes six magazines and
five research transactions. Referto membership application or
request information as noted above.
Conference Proceedings, Tutorial
Texts, Standard Documents. The Com¬
puter Society Press publishes more than 100 titles every year.

Standards Working Groups. Over 100 of these groups produce IEEE
standards used throughout the industrial world.
Technical Committees. Morethan30TCspublishnewsletters,provide
interaction with peers in specialty areas, and directly influence standards, conferences,
and education.
Conferences/Education. The society holds about 100 conferences
each year and sponsors many educational activities, including computing science
accreditation.
Chapters. Regular and student chapters worldwide provide the opportunity to
interact with colleagues, hear technical experts, and serve the local professional
community.

Members experiencing problems—magazine delivery, membership status, or unre¬
solved complaints — may write to the ombudsman at the Publications Office.

EXECUTIVE COMMITTEE BOARD OF GOVERNORS

President: Helen M. Wood*
National Oceanic and Atmospheric Administration

FB 4, Rm. 1069, Code E/SP
Washington, DC 20233

(301)763-1564

President-Elect: Duncan H. Lawrie*
Past President: Kenneth R. Anderson*

Term Expiring 1990:
Vishwani Agrawal, Mario R. Barbacci,

Ming T. (Mike) Liu, Yale N. Patt, Donald E. Thomas,
Benjamin W. Wah, Ronald Waxman

Term Expiring 1991:
P. Bruce Berra, Michael Evangelist,

Ted Lewis, Raymond E. Miller, Earl E. Swartzlander, Jr.,
Joseph E. Urban, Thomas W. Williams

VP, Conferences and Tutorials:
VP, Standards:

VP, Area Activities:
VP, Education:

VP, Membership and Information
VP, Press Activities:

VP, Publications:
VP, Technical Activities:

Laurel V. Kaleda (IstVP)*
Paul L. Borrill (2nd VP)*
Gerald L. Engel*
Ronald G. Hoelzeman*
Barry W. Johnson*
James H. Aylor*
Sallie V. Sheppard*
Mario R. Barbacci*

Term Expiring 1992:
Alicja I. Ellis, Tadao Ichikawa,

David Pessel, Sallie V. Sheppard, Bruce D. Shriver,
Harold Stone, Wing N.Toy

Next Board Meeting
March 1,1991,8:30 a.m.

Cathedral Hill Hotel, San Francisco, CA

Secretary: David Pessel*
Treasurer: Joseph Boykin*

Division V Director Edward A. Parrish, Jr.*
Division VIII Director: J. T. Cain*

Executive Director: T. Michael Elliott*
‘voting member of the Board of Governors

tnonvoting member of the Board of Governors

SENIOR STAFF

Executive Director: T. Michael Elliott
Publisher: H. True Seaborn

Director, Conferences and Tutorials: Anne Marie Kelly
Director, Finance and Administration: Tod S. Heisler

Director, Board and Administrative Services: Violet S. Doan

Headquarters Office
1730 Massachusetts Ave. NW
Washington, DC 20036-1903

Phone: (202) 371-0101
Fax:(202)728-9614

Publications Office
10662 Los Vaqueros Cir.

PO Box 3014
Los Alamitos, CA 90720-1264

Membership and General Information:
(714)821-8380

Publication Orders: (800) 272-6657
Fax:(714)821-4010

European Office
13, Ave. de L'Aquilon

B-1200 Brussels, Belgium
Phone: 32 (2) 770-21-98

Fax: 32 (2) 770-85-05

Asian Office
Ooshima Building

2-19-1 Minami-Aoyama, Minato-ku
Tokyo 107, Japan

Phone: 81 (3) 408-3118
Fax: 81 (3)408-3553

Richard S. Nichols
Michael J. Whitelaw
Ralph W. Wyndrum, Jr.
Robert T. H. Alden
H, Troy Nagle, Jr,

rresiueiii: oaneiuii«. oayiess
President -Elect: Eric E. Sumner

Executive Vice President: Martha Sloan
Secretary: Fumio Harashima
Treasurer: Wallace S. Read

vr, Luui.diiuiidi nuivuies
VP, Professional Activities
VP, Publication Activities

VP, Regional Activities
VP Technical Activities

The joy of G*scape

The C-scape™ Interface
Management System is a flexible

library of C functions for data entry
and validation, menus, text editing,
context-sensitive help, and windowing.
C-scape’s powerful Look & Feel™
Screen Designer lets you create full-
featured screens and automatically
generates complete C source code.

C-scape includes easily modifiable high-
level functions as well as primitives to
construct new functions. Its object-
oriented design helps you build more
functional, more flexible, more portable,
and more unique applications—and
you’ll have more fun doing it.

The industry standout. Many
thousands of software developers world¬
wide have turned to the pleasure of

C-scape. The press agrees:
“C-scape is by far the best.
... A joy to use,” wrote
IEEE Computer. Mqjor

companies have selected C-scape as a
standard for software development.

C-scape’s open architecture lets you use
it with data base, graphics, or other C
and C++ libraries. C-scape runs in text or
graphics mode, so you can display text
and graphics simultaneously. To port
from DOS or OS/2 to UNIX, AIX, QNX, or
VMS, just recompile. C-scape also

Elegant graphics and text
Graphics. Run in color in text or graphics mode.
Read images from PCX files.

Object-oriented architecture. Add custom
features and create reusable code modules. C++
compatible.

Mouse support. Fully-integrated mouse support for
menu selections, data entry fields, and to move and
resize windows.

Portability. Hardware independent code. Supports
DOS, OS/2, UNIX, AIX, VMS, others. Autodetects
Hercules, CGA, EGA, VGA. Supports Phar Lap and
Rational DOS extenders.

Text editing. Text editors with word wrap, block
commands, and search and replace.

Field flexibility. Masked, protected, marked,
required, no-echo, and named fields with complete
data validation. Time, date, money, pop-up list, and
many more higher-level functions; create your own.

Windows. Pop-up, tiled, bordered and exploding
windows; size and numbers limited only by RAM.

Menus. Pop-up, pull-down, 123-style, or slug menus;
create your own.

Context-sensitive help. Link help messages to
individual screens or fields. Cross reference messages
to create hypertext-like help.

Code generation. Build any type of screen or form
with the Look & Feel™ Screen Designer, test it, then
automatically convert it to C code.

Screen flexibility. Call screens from files at run
time or link them in. Automatic vertical/horizontal
scrolling.

International support. Offices in Berlin, Germany,
with an international network of technical companies
providing local training, support and consulting.

supports Phar Lap and Rational DOS
extenders.

Trial with a smile, e scape is
powerful, flexible, portable, and easy to
try. Test C-scape for 30 days. It offers a
thorough manual and function reference,
sample programs with source code, and
an optional screen designer and source

code generator. Oakland
provides access to a 24-
hour BBS, telephone servi¬
ces, and an international

network of companies providing in¬
country support. No royalties, runtime
licenses, runtime modules. After you
register, you get complete library source
code at no extra cost.

Call 800-233-3733 (617-491-7311 in
Massachusetts, 206-746-8767 in Washing¬
ton; see below for International). After
the joy of C-scape, programming will
never be the same.

DOS, OS/2 (Borland and Microsoft
support): with Look & Feel, $499; library
only, $399; UNIX, etc. start at $999;
prices include library source. Training
in Cambridge and Seattle each month.
Mastercard and Visa accepted.

bobsiib
Oakland Group, Inc. 675 Massachusetts Ave., Cambridge, MA 02139 USA. FAX: 617-868-4440. Oakland Group, GmbH. Alt Moabit 91-B, D-1000 Berlin 21, F.R.G.
(030) 391 5045, FAX: (030) 393 4398. Oakland International Technical Network (training, support, consulting): Australia Noble Systems (02) 564-1200; Benelux TM
Data (02159) 46814; Denmark Ravenholm (042) 887249; Austria-Germany-Switzerland ESM 07127/5244; Norway Ravenholm (02) 448855; Sweden Linsoft (013) 111588;
U.K. Systemstar (0992) 500919. Photo by Jessica A. Boyatt; Kaqji by Kgji Aso. Picture shows a C-scape program combining data entry with video images loaded from PCX
files. C-scape and Look & Feel are trademarks of Oakland Group, Inc.; other trademarks belong to their respective companies. Copyright © 1990, by Oakland Group, Inc.
Features, prices, and terms subject to change.

Reader Service Number 2

For the latest

UNIX research &

development

topics...

Technical
Conference

Grand Kempinski Hotel

Dallas, Texas

January 21-25, 1991

The Professional
and Technical
UNIX Association

For complete conference details, call:

(714) 588-8649 or write:
USENIX Conference Office
22672 Lambert St., Suite 613

El Toro, CA 92630

DALLAS
TUTORIALS

Two days of in-depth tutorials will be offered by internationally
renowned UNIX developers and educators. Software professionals
and technical managers who want to broaden their expertise in
advanced computing systems should register early!
■ System Security
■ UNIX Systems Internals
■ Introductory and Advanced

Courses on C + +
■ Gnu C Compiler Internals
■ Graphics and X Windows

• Parallel Programming
■ UNIX Technologies in Japan
■ Systems Administration & Perl
« Mach
« TCP/IP
■ Network Programming & Security

TECHNICAL SESSIONS
Presentations by leading experts on the evolution and

development of the UNIX operating system will feature:
■ Operating Systems of the Future ■ User Interfaces
■ Communications and ■ Programming Environments

Networking and Languages
■ Applications ■ Testing and Debugging

Special interest sessions offer the attendees an opportunity
to exchange information and ideas on such topics as systems
administration, security and networking. Facilities featuring Internet
and dialout access for attendees is provided.

THE SPONSOR
The USENIX Association is a not-for-profit professional

organization dedicated to fostering the development of research
and technological information pertaining to UNIX and
advanced computing systems.

The 1991 UniForum Trade Show will be held at the Dallas Infomart

on the same dates as the USENIX Conference.

UNIX is a registered trademark of AT&T.

